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Abstract

This thesis addresses the challenges of modelling defeasible reasoning under uncer-
tainty within intelligence analyses, focusing on hypothesis generation and evaluation –
an essential set of tasks where analysts must consider distributed, conflicting, uncertain,
false, and potentially deceptive information. During analysis, analysts are required to
generate the set of mutually exclusive and collectively exhaustive hypotheses to ensure
that all the possible hypotheses are evaluated, and crucial hypotheses are not over-
looked. With increasing data volumes, resulting from better collection methods and
the advent of access to this data via the internet, the complexity of analysis, and the
reasoning thereof, will increase also. This thesis is concerned with the development
of artificial intelligence tools, techniques, and algorithms that provide analysts with
reasoning-support during hypothesis generation and evaluation. The main output from
this work is a number of proposals studying whether argumentation theory, computa-
tional argumentation, probability and information theory, and deep learning could be
combined to offer assistance to analysts in these modelling tasks.

Four techniques are presented and evaluated. The first approach extends a well-
known argumentation scheme, deepening its level of specificity, and renders it capable
of representing analysts’ reasoning about hypotheses. The second proposal assesses the
feasibility of using large language models for hypothesis generation. The third tech-
nique can refine an analyst’s prior beliefs about the probability of hypotheses in light
of the outputs from semantic evaluation of probabilistic argumentation frameworks.
Finally, the fourth method employs abstract argumentation for sensitivity analysis and
can identify arguments which, if found to be false or deceptive, would cause the most
change to the conclusions drawn from an intelligence analysis. Throughout the thesis,
both abstract and real-world examples are used to demonstrate the applicability of the
novel techniques and algorithms presented. The proposals are proof of concepts and
intended to be used as post-analysis quality checks, ensuring that analysts’ reasoning
is rational and includes all the information available to them.
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Chapter 1

Introduction

In this chapter, I present my research question, motivate the domain within which the
work proposed in this thesis should provide benefit, set out a series of objectives in-
spired by the problem setting, list the main contributions of this thesis, provide an
overview of the structure of this thesis, and list a number of publications that resulted
from the work presented in this thesis.

1.1 Research Question

Intelligence analysis is a complex and cognitively challenging task that will become
increasingly more so as the intelligence community strives towards incorporating more
data in their analyses of novel situations. Intelligence analysts must reason with multi-
ple items of distributed, conflicting, uncertain, false, potentially deceptive, and missing
data to arrive at conclusions about what has happened, is happening, and will happen.
For intelligence analysis to keep up with the increased demands of the future, the use
of artificial intelligence (AI) approaches and algorithms is an obvious choice that could
provide decision- and analytical-support to analysts. There are, of course, many dif-
ferent tasks that AI could sensibly be employed for within this fecund research field.
However, the proposals made within this thesis focus on the development of AI tools,
techniques, and algorithms for all-source intelligence analysts conducting hypothesis
generation and evaluation. The overarching problem addressed throughout this thesis
is:

By what means may AI be employed for hypothesis generation and evalu-

ation within defence, security, and intelligence settings?

1
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The above question was motivated by a growing need to provide intelligence an-
alysts with reasoning support, due to the complexities of their work. In the quest for
answers, a number of different research disciplines were employed, namely: computer
science, artificial intelligence, mathematics, philosophy, linguistics, and intelligence
analysis.

1.2 Overview

The word intelligence can mean a number of different things depending on the context
within which it was used. For instance, the noun intelligence might refer to a student’s
ability to acquire and apply knowledge within an education setting or the collection
of information of military or political value, as per the Oxford Dictionary and The-

saurus definition [163, p. 543]. The work presented in this thesis draws upon the latter
definition.

There are two classical works that offer principles that are applicable to intelligence
analyses today, namely Sun Tzu’s The Art of War [219] and Carl von Clausewitz’s On

War [54], where they discuss notions of understanding one’s military capabilities, the
enemy, strategic planning, and deception. While both works are indeed fundamental to
intelligence analysis, further discussion about Sun Tzu’s The Art of War has been omit-
ted from this thesis because the book is mainly focussed on military strategy. Looking
more closely at [228], the Chairman of the Joint Chiefs of Staff for the United States
Armed Forces draws their definition of intelligence from Carl von Clausewitz’s 1832
book, titled On War:

“By ‘intelligence’ we mean every sort of information about the enemy and

his country – the basis, in short, of our plans and operations.” [54, p. 117]

The intelligence that Clausewitz refers to is any kind of information about our ad-
versaries that we can use to our advantage. In [54], Clausewitz discusses how a lot of
the intelligence reports that commanders receive are contradictory, false and uncertain,
and even more so when a country is in conflict with another. He argues that we can
resolve the inconsistent data contained within reports by conducting reasoning, guided
by the laws of probability and wisdom acquired from the knowledge of people, current
affairs, common sense, and experience. He contends that during times of war, there is
an increase in the number of intelligence reports, which increases the amount of con-
flicting information and makes the task of coming to the correct judgement extremely
challenging, leading to commanders doubting their own rationale. Although Clause-
witz’s comments were written in the year 1832, they provide an interesting perspective
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on the challenges of intelligence analysis today, where analysts must evaluate several
orders of magnitude more conflicting, erroneous, and uncertain data.

Today, in the West, after the initiation of a Request For Information (RFI), data
is collected from an operational environment by a single-source analyst. A RFI is
created when a stakeholder, decision maker, or commander requires more information
to make a well-informed decision, or when an all-source analyst needs more data to
complete an analysis. The required data is then collected by a single-source analyst,
using any one of the five disciplines of intelligence collection [139], as part of the
Intelligence Cycle, which I describe in Section 2.1.1. An all-source analyst, whose
job is explained in Section 2.1.3, receives those items of collected information and
begins their own analysis. The all-source analyst reasons abductively – using all the
collected, already-available, and multi-modal data supplied by single-source analysts –
to generate hypotheses, which are then evaluated by the same analyst, using the same
set of data.

At the heart of every good scientific method is an initial observation that inspires
the formation of a hypothesis, which is then tested in a fair experiment where the
results are analysed and then communicated in, say, a peer-reviewed article, a report,
or even a thesis. We might deem a publication good if the results from experiments
within that article are repeatable and based on evidence. The generation and evaluation
of hypotheses within the context of intelligence settings is no different to hypotheses
formed and tested using the scientific method.

Hypothesis generation and evaluation is the cornerstone of all intelligence analyses
and there are many analytical techniques that aid analysts with this task, as I describe
in Section 2.1.5. Here, the term hypothesis is used in a general sense to mean a fore-
cast, explanation, or conclusion based on available information and evidence found,
and assumptions made, within the Intelligence Cycle. In [173], Pherson and Heuer Jr.
define a good hypothesis as:

• A statement;

• Testable and falsifiable;

• Based on observations;

• Predicts anticipated results clearly.

It is of the utmost importance that analysts generate the set of plausible, mutu-
ally exclusive and collectively exhaustive (MECE) hypotheses because it ensures that
they evaluate the set of non-overlapping and possible hypotheses such that no two hy-
potheses can be observed to be true at the same time, for a given scenario. Here, it is
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important to note the distinction between the realisation of a hypothesis and an ana-
lyst’s prior belief about the probability of a hypothesis. The probability of a hypothesis
is based upon the outputs from an intelligence analyst’s analysis. There will be a num-
ber of different (or collectively exhaustive) hypotheses that the analyst has generated
and evaluated in order to produce a set of probabilistic judgements, where the analyst
might say that one hypothesis is more likely than the other, both hypotheses are equally
likely, etc. The realisation of a hypothesis happens when one of the set of collectively
exhaustive hypotheses actually occurs such that it is an event that has been observed.
In this instance, the realised hypothesis is a distinct event such that there is no over-
lap with any of the other hypotheses that were considered during analysis, due to their
mutual exclusivity which necessitates that two or more hypotheses cannot occur at the
same time. Another way to think about this is that the set of generated hypotheses will
eventually become mutually exclusive, after the observation of one of those hypotheses
at some point in time after analysis has concluded. Generating the set of MECE hy-
potheses ensures that analysts do not miss an important hypothesis by forcing them to
evaluate all potential outcomes based on available data. There are a number of different
analytical techniques which aid analysts in the generation of MECE hypotheses, which
I explore briefly within Section 2.1.5.1. To the best of found knowledge, there have
been no proposals for solutions to automated hypothesis generation within intelligence
contexts. However, as I state in Section 2.4.1, some have argued that, with the recent
advances in the field of natural language processing, large language models could as-
sist intelligence analysts with many tasks [204], where one obvious idea would be to
employ them for MECE hypothesis generation.

All-source analysts also employ an assortment of analytical techniques during hy-
pothesis evaluation, as I show in Section 2.1.5.2. Analytical techniques and intelligence
analysis are closely intertwined. Analysts within the United States of America are re-
quired by law [224] to employ such tools, where appropriate, after the intelligence
failings that contributed to the successful (from the perpetrators’ point of view) ter-
rorist attacks on 11th September 2001 and the arguably unjustified invasion of Iraq in
2003 [58]. The Analysis of Competing Hypotheses [101] is an example of a diagnostic,
analytical technique that assists analysts by providing them with a structured process
during the evaluation of hypotheses. First proposed by Heuer Jr. in the 1970s, the
Analysis of Competing Hypotheses enables the analyst to reason with multiple items
of information, evidence, and assumptions in order to quantify the probability of hy-
potheses. Pherson and Heuer Jr., two of the technique’s biggest proponents, claim that
the procedure reduces confirmation bias [173, p. 164-165] because the relative prob-
ability of a hypothesis is computed as a function of how many data were in conflict
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with it, and the most likely hypothesis is the one which has the fewest inconsistencies.
Techniques like the Analysis of Competing Hypothesis provide analysts with a repeat-
able and explainable methodology, capturing their reasoning so that other analysts can
understand, and even scrutinise, their assessments.

One of the fundamental requirements for reliable and correct intelligence analysis
is coherent reasoning about conflicting information, where conclusions can be revised
as new data becomes available. Analyses can be, at times, cognitively challenging,
and a fortiori when the analyst is required to reevaluate the likelihood of hypotheses
in light of new information. The use of AI approaches that can automate some of the
reasoning tasks that analysts must complete should provide tangible benefit to the in-
telligence community. Computational models of argument, a sub-field of AI and com-
puter science, can help analysts by conducting some of the logical and non-monotonic
reasoning necessary for intelligence analyses. For example, the process by which the
probability of a hypothesis is quantified using the Analysis of Competing Hypothe-
ses is somewhat synonymous with how the acceptability of arguments are computed
by a semantics within Dung’s formative abstract argumentation framework [70]. As
the forthcoming definitions in Section 2.1.5.2 demonstrate, the most likely hypothesis,
quantified using the Analysis of Competing Hypotheses, is the one that conflicts with
the fewest items of information, evidence, and assumptions. Whereas, in Dung’s for-
malism, as presented in Section 2.3.1, a set of arguments is deemed to be admissible if
that set possesses no internal conflicts and the arguments contained within that set can
successfully defend each other from external attacks.

The arguments, and attacks between them, found within intelligence settings are
real-world arguments, and hence intelligence analysts do use certain, stereotypical pat-
terns of inference during their evaluation of hypotheses. Argumentation theory, a sub-
field of philosophy and linguistics, can help by capturing the reasoning of an analyst
in a coherent, defeasible, and explainable manner, which makes argumentation both
an effective and suitable technology to employ in the development of tools and tech-
niques for intelligence analysis. Argumentation schemes provide a method of rep-
resentation for arguments put forth about information, evidence, and assumptions that
support hypotheses or their negation, as I show in Chapter 3 and the introduction to Part
II. The set of critical questions associated with each scheme can facilitate the identi-
fication of attacks between propositions within other arguments, which may enable
analysts to identify attacks that they previously did not consider. Moreover, argumen-
tation schemes and their corresponding sets of critical questions have been shown to
be useful in the instantiation of Dung-style argument systems [15], enabling automated
reasoning about the acceptability of refined arguments (Section 2.3.3.1). Thus, both
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argumentation schemes and Dung’s argumentation framework are of great significance
to the work presented throughout the remainder of this thesis.

As argued by Clausewitz in [54], the analyst should utilise the laws of probability
in order to arrive at a set of reliable, coherent, and correct conclusions. This notion
is still indeed valid within the intelligence community to this very day. As I explain
in Section 2.1.1, hypotheses are included within an intelligence report (or a finished

intelligence product) that is disseminated to stakeholders, decision makers, and com-
manders. The report also contains qualitative probabilistic judgements corresponding
to each of the hypotheses contained within it, as I describe in Section 2.1.4, which
permits the customers of that product to understand how likely the outcomes are. Intel-
ligence analysis is reasoning that is conducted using probability and under uncertainty
– i.e., uncertainty is present within the probabilistic judgements made by an analyst
and, during an analysis, it may arise from the source of an item of information, to
name a couple of examples. Thus, for AI techniques to offer benefit to the intelligence
community, proposed tools should enable the incorporation of both probability and un-
certainty. Proposals for hypothesis evaluation tools that incorporate AI, argumentation,
probability, and uncertainty are discussed in Section 2.4.

It is important to highlight some of the challenges involved with conducting re-
search into the development of AI tools, techniques and algorithms that support in-
telligence analysts during analysis. To design, develop and test reliably accurate AI
systems, the intelligence community would need to provide researches with a wealth
of high quality and correct data. However, much of the data required to build such sys-
tems is classified. Even if those data were unclassified for, say, research, intelligence
analysts often evaluate rare events for which there is little to no data available to train
AI systems on. If the intelligence community were somehow able to train and employ,
for example, the capabilities of machine and deep learning within intelligence analyses,
model interpretability and transparency is still an issue. Every stage of an intelligence
analysis should be auditable and explainable, and not all the current state-of-the-art
learning models within the literature are. While there have been many advances in the
field of AI, such as in the natural language processing literature with the recent advent
and popularity of large language models, such language models in their current state
are not proficient at conducting coherent and consistent reasoning. As the results in
Chapter 4 demonstrate, such models can also potentially fall victim to hallucinations
which would be, at best, unhelpful to the analyst. Tools that can represent and au-
tomate some of the analyst’s reasoning whilst also allowing for input from the human
should provide the most benefit to analysts, which is why computational argumentation
is such an attractive technology. However, as I discuss in Section 2.1.5.2, the develop-
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ment of any reasoning- and decision-support tools requires the insights and experience
of analysts whose propensity to assist with this task may differ between individuals.

In light of the above, I present the main goals of this thesis below:

1. To provide a theory of representation for hypotheses that are supported by infor-
mation, evidence, and assumptions that accounts for the defeasible nature of the
reasoning, probability, and uncertainty inherent within intelligence analyses.

2. To investigate the feasibility of employing large language models for hypothesis
generation within an intelligence domain.

3. To design and develop a formal account capable of refining an intelligence an-
alyst’s initial probabilistic judgements by conditioning their prior beliefs on the
acceptability of available information. The approach should be tested on a real-
world example to assess the potential performance of the proposal in practice.

4. To design and develop explainable algorithms which quantify the sensitivity, ro-
bustness, and dependence of the conclusions drawn from an intelligence analysis
based on the arguments present within it, and evaluate the proposed approach us-
ing a real-world example from the intelligence domain.

1.3 Contributions

The main contributions of this thesis are a series of AI tools, techniques and algorithms
that were developed in order to provide decision- and reasoning-support to intelligence
analysts during analysis. The contributions are listed below:

• The first contribution – articulation of an argumentation scheme, called the Ar-

gument from Multiple Causes to Effect – should allow the intelligence analyst to
represent their reasoning about items of information, evidence, and assumptions
that support hypotheses. Each proposition within the scheme has a probability
and confidence interval which corresponds to the proposition’s likelihood and
uncertainty, respectively. The proposed scheme draws upon Walton’s argument
from cause to effect [236], extending its level of specificity so that it can be em-
ployed within intelligence settings. The scheme is also accompanied by a set of
critical questions which could aid the analyst in RFI generation and the identifi-
cation of conflicts between propositions within abstract formalisms.
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• The second contribution of this thesis is a study that assessed the feasibility of
employing large language models for hypothesis generation. A number of state-
of-the-art language models were used, as well as data which contained open-
source intelligence reports from the current conflagration between Russia and
Ukraine.

• The third contribution can be divided into two parts, namely: a definition of a
hypothesis and a definition of an item of information within the ASPIC+ frame-
work [177, 150]; and a formal method that employs those definitions and can
refine an analyst’s judgements about the prior probabilities of hypotheses, using
the outputs from semantic evaluation of probabilistic argumentation frameworks
[133] and Bayes’ theorem [18].

• The fourth contribution employs abstract argumentation for sensitivity analysis.
The outputs from Dung’s argumentation frameworks [70] are used to compute
the probability of partitions of argument labels in order to compute the change in
mutual information [200, 59] before and after the removal of an argument of in-
terest. The technique provides a holistic quantification of the sensitivity, robust-
ness, and dependence of an argumentation framework’s conclusions to change
caused by the removal of arguments.

• The final contribution of this thesis is an instantiated argumentation framework,
stored in the Argument Interchange Format [11], which contains annotated data
from a real-world deception scenario from World War Two, called Operation
Fortitude-South. The data stored in the Argument Interchange Format was con-
verted to an ASPIC+ argumentation theory [177, 150] and then to a Dung ab-
stract argumentation framework [70], using the procedure described in [23] and
Section 2.3.2.3, in order to evaluate the performance of the third and fourth con-
tribution using real-world data.

1.4 Thesis Structure

This thesis is structured as follows:

- Chapter 1 is this chapter where this thesis’ research question and objectives are
defined.

- Chapter 2 presents an extensive literature survey relevant to the contributions
made throughout this thesis. The chapter explores the topics: intelligence anal-



INTRODUCTION 9

yses, argumentation theory, computational models of argument, and proposed
tools and techniques that provide benefit to intelligence analysts in their daily
duties.

- Part I is comprised of two chapters, Chapters 3 and 4, and makes two proposals
with the aim of supporting intelligence analysts in the representation and gener-
ation of hypotheses.

– Chapter 3 draws upon Walton’s argument from cause to effect [236] and
proposes an argumentation scheme for the representation of hypotheses
supported by multiple causes, while also enabling the inclusion of un-
certainty and probability within each proposition instantiated within the
scheme.

– Chapter 4 studies whether large language models can be reliably used for
hypothesis generation within intelligence contexts. This chapter employs
state-of-the-art language models and a dataset from a real-world and cur-
rent intelligence scenario, containing hypotheses supported by information,
to evaluate the feasibility of using such models for hypothesis generation.

- Part II examines two approaches, proposed in Chapters 5 and 6, to aid intelli-
gence analysts in hypothesis evaluation tasks. The introduction to Part II presents
the method for the manual instantiation of an Argument Interchange Format [11]
argument graph, which was transformed into an ASPIC+ argumentation theory
[177, 150] and then to a Dung argument system [70], and used a scenario per-
taining to an Allied deception operation from World War Two, called Operation
Fortitude-South. The graph was employed to test the techniques presented in
Chapters 5 and 6 on data from a real-world setting.

– Chapter 5 proposes an approach for the refinement of intelligence ana-
lysts’ prior probabilistic judgements about hypotheses using both proba-
bilistic argumentation frameworks [133] and Bayes’ theorem [18]. The
quality of the method is assessed using a series of abstract examples and
the argumentation framework introduced at the start of Part II.

– Chapter 6 employs Dung’s seminal argumentation framework [70] for sen-
sitivity analysis. Again, the benefit of the technique was assessed using an
abstract, running example and the Operation Fortitude-South framework
presented in the beginning of Part II. The method was also implemented in
a Python [232] application with a graphical user interface in order to show
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that results should be relatively easy for intelligence analysts to obtain,
whilst also providing useful insights.

- Part III is comprised of one chapter, Chapter 7, that concludes the research
presented in this thesis and provides some suggestions for possible areas of future
work in Sections 7.1 and 7.2, respectively.

1.5 Related Publications

Parts of this thesis appear in the following publications:

• A brief description of intelligence analysis, the Intelligence Cycle, an early ver-
sion of this research’s aim and objectives, preliminary results, discussion, and
avenues for future work are presented in [186], and the description of the Intel-

ligence Cycle in Section 2.1.1 and the diagram in Figure 2.2 were adapted from
that document.

• In [188], Dung’s abstract argumentation framework [70] was employed for sensi-
tivity analysis. The formal definitions for the probability spaces, mutual informa-
tion [200, 59] calculations, and sensitivity analysis in Chapter 6 were taken from
that publication. The chapter also employs the same running example in Figure
6.1 as the one in the paper. However, the example presented in this thesis uses
preferred (instead of complete) semantics to demonstrate how the algorithms in
Chapter 6 work.

• A software application that is capable of running the algorithms proposed in
Chapter 6 (and [188]) and visualising the results was also presented in [187]. The
application presented in Section 6.4.2 is the same as the one in [187], however it
is accompanied by a more detailed explanation of how to use it and the outputs.



Chapter 2

Literature Review

In this chapter, I present an overview of the current literature that is pertinent to the
topics covered in this thesis. In Section 2.1, I introduce the topic of intelligence anal-
ysis. Section 2.2 examines argumentation theory and Douglas Walton’s work on ar-
gumentation schemes, as they are foundational to the scheme proposed in Chapter 3
that represents reasoning about hypotheses. Section 2.3 surveys the field of compu-
tational argumentation. Here, I introduce Dung’s abstract account of argumentation,
the ASPIC+ framework and the mapping from the Argument Interchange Format to
abstract argumentation frameworks, to enable defeasible reasoning about real-world
arguments and the conflicts between them. I end this section with discussion about the
process and limitations of both manual and automated argument mining. As I show
in the introduction to Part II, the argumentative structure was extracted from an ex-
ample pertaining to World War Two, using manual argument mining. Those argument
data, stored within the Argument Interchange Format, were then transformed into an
ASPIC+ argumentation theory and then to a Dung abstract argument system in order
to enable the testing and evaluation of the approaches proposed in Chapters 5 and 6.
Section 2.4 provides an overview of the decision- and reasoning-support tools and tech-
niques for intelligence analysis, studying general, Bayesian, and argumentation-based
approaches. Finally, in Section 2.5, I conclude with a summary of the chapter.

11
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2.1 Intelligence Analysis

Following on from Clausewitz’s definition of intelligence, introduced in Chapter 1, in
this section, I examine the topic of intelligence analysis, exploring how it is conducted
and the types of analysts involved. I explain why intelligence analysis was transformed
into a more scientific pursuit, after some recent intelligence failings, such as the terror-
ist attacks on 11th September 2001 and the disputed invasion of Iraq in 2003. I examine
the analytical techniques frequently employed within the intelligence community, fo-
cusing mainly on the process, benefits, and limitations of the Analysis of Competing
Hypotheses.

The act of intelligence analysis is similar to that of a metaphorical funnel, where
data is collected from an operational environment and condensed into a finished intelli-
gence product, which is then used in the downstream decision-making process (Figure
2.1). For a given operational environment, there will be data that can be collected which
might be important. An operational environment contains a number of different oper-
ational variables which can make each scenario quite different. Operational variables
include things such as the distribution of political responsibility; military capabilities;
economic behaviour; social aspects like culture, religious views, and ethnicity within a
given area; and the physical environment, to name a few [14]. Through the operation of
Processing and Exploitation1, data is collected from the operational environment and
transformed into information. Information can be of use to a stakeholder or decision
maker, but there is often not much utility in the information when considered on its
own. However, when multiple items of information have been analysed and evaluated
in conjunction, it results in pieces of intelligence which clearly explain current and fu-
ture events, along with the inherent uncertainty in that forecast, for a given operational
environment. Intelligence analysis, therefore, is the act of reasoning with multiple
items of information to come to conclusions about a situation, assessing the likelihood
of an adversary’s past, present, and future actions based upon available observations or
data.

1I do not consider any Processing and Exploitation techniques within this thesis. However, it is important
for the reader to be aware of the wider process of intelligence analysis.
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Figure 2.1: The refinement and transformation of data, collected from an operational
environment, into items of intelligence (taken from [228]).

2.1.1 The Intelligence Cycle

The Intelligence Cycle is displayed in Figure 2.2 and includes five steps, which are:
planning, tasking, collection, analysis, production, and dissemination [227, 206]. In
the planning stage, stakeholders and decision makers discuss and identify what they
might need to know about a particular topic within an operational environment – list-
ing all the things they already know, those things that they do not, and what they need
to find out – so that they can make a well-informed judgement after the Intelligence

Cycle has concluded. After planning, a RFI is initiated by different types of stake-
holders, such as commanders, policymakers, all-source intelligence analysts, amongst
others. A RFI can come in different forms, depending on the customer who initiated it
[114]. Now a varying number of relevant assets, such as single-source analysts, are then
tasked with the collection of pertinent data from the operational environment, which I
discuss further in Sections 2.1.2 and 2.1.3. After collection, data is transformed into
information through Processing and Exploitation techniques, which are not discussed
in any tangible detail within this thesis. Intelligence analysts then begin analysis of
new and already available information, using a variety of diagnostic, contrarian and
imaginative thinking techniques, to carry out tasks such as hypothesis generation and
evaluation [223]. It is the diagnostic techniques that are the most pertinent to this thesis.
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I will, therefore, introduce and discuss in more detail the Analysis of Competing Hy-
potheses, which is one such technique that is employed in the evaluation of hypotheses
using available information, in Section 2.1.5. After analysis is complete, intelligence
analysts produce what is referred to as a finished intelligence product or an intelligence

report that contains the relative probability of hypotheses, along with any items of di-
agnostic information which would change the likelihood of the lead hypothesis if any
one of those items were found to be untrue. The intelligence product is then dissem-

inated with customers who make decisions based on the judgements output from an
analysis. The process ends when the same customer, who started the Intelligence Cy-

cle with their RFI, receives an intelligence report which contains the answer to their
original question.

Planning Tasking Collection Analysis Production Dissemination

Figure 2.2: The Intelligence Cycle.

There are many different approaches to intelligence analyses which differ depend-
ing on where you are in the world. In a recent podcast2, Mike Baker, a former Central
Intelligence Agency agent, describes the difference between the West’s approach to the
Intelligence Cycle and compares it with China’s procedures [191]. Baker’s so-called
Western approach is a targeted approach in which Western intelligence services identify
items of information they require, and then task the relevant people to collect that data
from an operational environment, similar to the process described in Figure 2.2. On the
other hand and according to Baker, China collects all the information they can and then
employ teams of agents to assess it, extracting any important pieces of information.
Baker’s comments are in some sense a generalisation because it is highly likely that the
West will collect and evaluate more than just targeted information, and China will also
have more targeted approaches than the mass collection effort that Baker suggests.

Both approaches have their benefits and issues. For instance, one might spend
an unnecessary amount of time sifting through swathes of data to extract a piece of
information that would have been quicker to obtain through a targeted collect, when
using, what Baker coined, the Chinese approach. Whereas, while using the supposed
Western approach, analyses might be impacted by the notion that you don’t know what

you don’t know, and therefore both analysts and customers might not always know

2It is important to note that while this citation is from a podcast and it has not undergone the rigour of an
academic peer-review, there is currently not any openly available literature that compares and contrasts the
different approaches to the Intelligence Cycle around the world because this information is often classified.
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what they need to collect or include in analyses to make a well-informed evaluation
or decision, respectively. This notion is reaffirmed by the late Donald Rumsfeld, the
former United States Secretary of Defence, in the following quote taken from a news
briefing about the lack of evidence linking the Iraqi government to weapons of mass
destruction.

“Reports that say that something hasn’t happened are always interesting
to me, because as we know, there are known knowns; there are things
we know we know. We also know there are known unknowns; that is to
say we know there are some things we do not know. But there are also
unknown unknowns – the ones we don’t know we don’t know. And if one
looks throughout the history of our country and other free countries, it is
the latter category that tends to be the difficult ones.” [64]

The unknown unknowns problem is exacerbated by the need to know policy cur-
rently employed within the Western intelligence community [22]. The general idea is
that a person is only given the information that they need to know to complete their
individual task within the Intelligence Cycle. While this has the benefit of enforcing
security through obfuscation, compartmentalised information can lead to inaccurate
analyses due to missing information, and ultimately intelligence failures, such as the
terrorist attacks on 11th September 2001 [230]. Proposals have been made to change
the need to know principal to a responsibility to provide paradigm [34, 22]. How-
ever, this information-sharing approach has its flaws too, namely sharing too much
information increases the likelihood that your adversaries will become aware of your
knowledge on a topic, leading to security breaches.

2.1.2 Types of Intelligence

The collection activities conducted by intelligence agencies within the West use a va-
riety of capabilities to obtain the target information required by a stakeholder, policy
maker, or decision maker, in answer to their RFI. There are five widely-agreed upon
intelligence collection disciplines [139]:

• Human Intelligence (HUMINT), which is obtained from human sources and
can be split into two categories: overt collection; and covert activities. Overt
HUMINT collection is performed openly by military attaches, diplomats, and
members of official delegations, amongst others [227]. Covert HUMINT collec-
tion is conducted by agents who have agreed to provide information on a foreign
nation in a clandestine manner.
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• Signals Intelligence (SIGINT) is information collected by intercepting signals.
The types of signals monitored and intercepted by SIGINT are, for example:
communications intelligence which monitors things such as telephone traffic,
video, fibre optics, or any other means of communication; electronic intelligence

which employs transmissions from non-communication devices, such as radar,
to locate an emitter, its characteristics, and any other systems that are supporting
it; and foreign instrumentation signals intelligence which collects information
on an adversary’s weapon systems while they are undergoing testing [226].

• Imagery Intelligence (IMINT), which is the act of acquiring representations of
objects captured using, for example, photography from hand-held cameras and
satellites, or other media sensors, such as radar sensors and lasers, to name a
couple.

• Measurement and Signature Intelligence (MASINT), which is focused on the
collection and analysis of data from scientific and technical sensors, with the
goal of identifying the occurrence of events with distinctive features that is often
indicative of, for example, an adversary who has conducted experiments with
new equipment.

• Open-Source Intelligence (OSINT), which involves the collection of data from
sources available to the public, such as material on the internet. When open-
source information is combined, it is sometimes possible to derive classified in-
formation [227]. The future of intelligence analysis and national security will
depend on leveraging the ever-increasing capability of AI, machine, and deep
learning tools for OSINT [110].

2.1.3 Types of Intelligence Analyst

There are two types of analyst who have different roles within the Intelligence Cycle,
namely Single-Source Analysts (SSAs) and All-Source Analysts (ASAs). Similar to
the process discussed in Section 2.1.1, these analysts are tasked by a customer and
answer a RFI. However, the fundamental difference is that SSAs commonly collect data
and process it turning it into information, while ASAs conduct analysis on a variety of
different items of information collected and shared by SSAs.

The role of SSAs is to use their expertise with a single source to collect data from
an operational environment, using one of the five disciplines of intelligence collection
(Section 2.1.2). Then, through a series Processing and Exploitation techniques (Sec-
tion 2.1.1), they refine those data into items of information, which can be employed in
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downstream analysis and production. The information produced by SSAs is sometimes
referred to as raw intelligence, which is usually in the form of a report which contains
the collected data along with a summary of the SSA’s findings [53]. However, there
is little to no dialogue between an ASA and their single-source counterparts because
the assessments generated by the set of SSAs are usually retrieved by the ASA through
database queries3.

As the name implies, ASAs make use of all the relevant and available information
given to them by their single-source counterparts, to produce finished intelligence, in
answer to a stakeholder’s, decision maker’s, or commander’s (i.e., the customer’s) RFI.
The ASA is usually the customer of the SSA’s raw intelligence which, when combined
with other SSAs’ results during an analysis, is used to produce a finished intelligence

product. The ASA is trained to utilise a variety of diagnostic, contrarian, and imagi-
native thinking techniques to combine multiple sources of information into a consol-
idated intelligence product [46]. As previously mentioned in Section 2.1.1, once a
stakeholder, decision maker, or commander receives the finished intelligence product

from the ASA, the Intelligence Cycle is complete.
The target audience that will benefit the most from the tools and techniques pro-

posed in this thesis is the ASA as they are the analysts who conduct most of the rea-
soning with conflicting, uncertain, missing, and potentially false information.

2.1.4 Communicating Probability

Given the uncertainty inherent in intelligence analyses, the evaluated hypotheses and
diagnostic information contained within a finished intelligence product might not al-
ways be correct or, as situations unfold, the true likelihood of a hypothesis could change
faster than the Intelligence Cycle is able to produce intelligence reports. As such, it is
necessary to communicate the probabilities and uncertainties that feature in the output
of each analysis.

Describing numerical probability qualitatively is important when assessing the un-
certainty in items of information and communicating the likelihood of evaluated hy-
potheses. Intelligence analysts often employ probability phrases, rather than explicit
numbers, because numerical probabilities ‘creates illusions of rigour, such that quan-
tifying probability assessments would cause decision makers to see these estimates as
being more scientific than they really are’ [82, p. 804]. Many Western intelligence
agencies have clearly defined standards for communicating probabilities, such as the
North Atlantic Treaty Organisation [157], the United States of America [229], Canada

3Personal communication with H. Greenhough on 17th October 2022.



18 2.1 INTELLIGENCE ANALYSIS

[44], and the United Kingdom [221], to name a few. While the intelligence agencies
around the globe employ slightly different probability ranges to describe different ver-
bal probabilities, they share a common goal: to clearly define the uncertainty featuring
in the outputs of complex analyses, within an intelligence context. I present the United
Kingdom’s standard used by Defence Intelligence for probability communication, re-
ferred to as the Probability or Uncertainty Yardstick, in Table 2.1. The Probability
Yardstick is one such tool that was developed to enable the qualitative communication
of probability and uncertainty ranges.

Table 2.1: The Probability (or Uncertainty) Yardstick: a method of communicating
verbal probabilities and uncertainties for numeric ranges within the unit interval [220].

Qualitative Probability Quantitative Probability Range

Remote chance or highly unlikely Less than 10%
Improbable or unlikely 15% – 20%

Realistic probability 25% – 50%
Probable or likely 55% – 70%

Highly probable or highly likely 75% – 85%
Almost certain More than 90%

2.1.5 Structured Analytical Techniques for Intelligence Analysis

Structured analytical techniques are the most widely-known and frequently-used tools
employed during analyses within the intelligence community. The tools were first de-
veloped by two former Central Intelligence Agency analysts, Heuer Jr. and Davis, in
the 1970s [50]. After the terrorist attacks on 11th September 2001 and the invasion of
Iraq in 2003 on the faulty premise that the country had weapons of mass destruction
[58], the United States Congress enshrined in law the use of analytical techniques for
all intelligence analyses, where appropriate [224].

Drawing upon some of the notions in the cognitive science literature, the tools’ two
most notorious proponents, Pherson and Heuer Jr., argue that the methods reduce a
number of different cognitive biases by externalising a lot of the internal thought and
reasoning processes when analysts are conducting analyses [173]. They argue that the
main benefit of using such techniques is in their ability to elicit structured thinking
in an intelligence domain, which is so often easily plagued by intuitive and implicit
process. All the analytical techniques that I discuss in this thesis are underpinned by
accounts of reasoning using dual-process theory, pioneered by Stanovich and West in
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[208], which dissects reasoning, and thus analyses, into System One and System Two

processes.
The general notion is that a human has a dichotomy of minds in one brain which

compete during tasks ranging from simple multiplication to complex analyses. System

One operates in a fast, automatic, and involuntary manner such that it is efficient and
helps reasoners arrive at the correct conclusions for certain, easier situations, such as
the answer to 5×5 = X , which we all intuitively know. When referring to someone’s
System One process, one might refer to their intuition or their ability to recognise and
map patterns from previous events to current ones.

System Two, on the other hand, is required to arrive at the correct answer during
difficult tasks, such as complex computations or even intelligence analyses. However,
System Two thought is arduous such that it is only used when a person requires it and,
even then, it is still tempting for a reasoner to defer to System One. In [116], the late
Nobel Prize winner, Daniel Kahneman, explores the difference between System One
and System Two processes through a series of basic examples that the reader must
complete using, first, their intuition, which is often found wanting, and then Kahneman
provides the reader with the answer, which is generally an answer such that only Sys-
tem Two could produce it. In the same spirit, I present one of Kahneman’s examples
which the reader should try to solve using intuition:

“A bat and ball cost $1.10.

The bat costs one dollar more than the ball.

How much does the ball cost?” [116, p. 44]

At first glance, the answer is seemingly simple, the cost of the ball is 10¢. Although
that answer is intuitive, it is, in fact, wrong. If the ball were to cost 10¢, then the
bat would cost $1.10, making the total $1.20. The correct answer is 5¢ for the ball
and $1.05 for the bat. It is clear to see from this trivial example that reasoning can
easily fall victim to lapses in analytical thought. How much more shall the intelligence
reports resulting from analysis contain erroneous judgements from failures in intuition,
if analysts are not guided by external processes that elicit System Two thinking? Thus,
the example above should enable the reader to understand the motivation for structured
analytical techniques.

Throughout the remainder of this subsection, I introduce a variety of structured
analytical techniques employed within the intelligence community that are relevant to
the subsequent chapters in this thesis, focusing mainly on hypothesis generation and
evaluation.
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2.1.5.1 Hypothesis Generation

I now introduce a number of different methods for multiple hypothesis generation,
namely Simple Hypotheses, Quadrant Hypotheses, and the Multiple Hypotheses Gen-

erator™. The choice of technique depends on the complexity of the situation. All the
hypotheses generated from these techniques can employed in downstream evaluation
techniques, such as in the Analysis of Competing Hypotheses, which is discussed in
Section 2.1.5.2.

Simple Hypotheses Generation. The Simple Hypotheses technique, presented in
Figure 2.3, is a group exercise for multiple hypothesis generation that was created by
Pherson and Heuer Jr. in [173]. To begin the technique, a group of analysts must come
together and review the available information. The analysts should possess diverse
expertise for different aspects of the problem, such as differing cultural backgrounds,
perspectives, experiences, and styles of thinking. Each person is tasked with generating
one to three mutually exclusive hypotheses in the Idea Generation and Brainstorming

stage, writing each hypothesis on separate pieces of paper. Analysts should employ
either situational logic (i.e., reasoning about the information and underlying driving
forces in the scenario) or comparison with historical examples to produce alternative
hypotheses. The alternative hypotheses from all the analysts are then consolidated,
ensuring that there are no duplicates, and written on a shared display, such as on a
whiteboard. The set of both possible and unique hypotheses are then combined into
affinity groups, during the Idea Grouping phase. In [173], Pherson and Heuer Jr. then
suggest reinstating the problem in different ways to consider opposing outcomes to po-
tentially create new hypotheses. Analysts must then clarify each hypothesis by asking
a series of journalistic questions, such as Who, What, How, When, Where and Why?

Finally, the most promising hypotheses are appended to the final set of hypotheses,
which are then employed in evaluation techniques.

Quadrant Hypothesis Generation. In [173], Pherson and Heuer Jr. proposed Quad-
rant Hypothesis Generation for instances where a situation has two key dimensions.
Using the time prior to Russia’s invasion of Ukraine as an example, the four hypothe-
ses that an analyst might have generated using this method are presented in Figure 2.4.
The method starts with an analyst, or a team of analysts, constructing a 2 × 2 matrix
and identifying the two dimensions, which were Russia’s objectives and the impact

on Ukraine in the case of the example in Figure 2.4. Pherson and Heuer Jr. ask an-
alysts to think of each dimension as continuous scales and to write the extremes of
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Figure 2.3: The Simple Hypotheses technique for multiple hypotheses generation
(adapted from [173]).
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Figure 2.4: An example of the Quadrant Hypothesis Generation technique on the time
prior to Russia’s invasion of Ukraine.

each driver at the start and end of the horizontal and vertical axes. Analysts then use
the dimensions to populate each quadrant with hypotheses. Each quadrant can contain
more than one hypothesis and the hypotheses generated are to be viewed as potential
end states. Analysts should then identify indicators that monitor whether the situation
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is moving towards one of the end states. It is important to note that quadrant hypoth-
esis generation is quicker than the other hypothesis generation methods examined in
this thesis. However, this technique does not perform well when there are more than
two key dimensions, or in cases where the two driving forces have not been correctly
identified.

Multiple Hypothesis Generator™. In [173], Pherson and Heuer Jr. proposed a
method for multiple hypothesis generation, called the Multiple Hypotheses Genera-
tor™, as shown in Figure 2.5. The procedure begins after the identification of a lead
hypothesis. An analyst then enumerates through the components of the main hypoth-
esis, using journalistic questions such as Who, What and Why? This results in a set
of permutations which are all the potential hypotheses that one could generate from
the lead hypothesis and available information. Analysts should try to ensure that the
permutations are mutually exclusive and discard any hypotheses that are not possible.
Analysts then score the credibility or plausibility of each permutation, sort the list of
permutations from most to least plausible, restate the permutations as hypotheses, and
then select the hypotheses from the list that require further analysis.

The three techniques for multiple hypothesis generation provide analysts with a
structured approach to generate the set of MECE hypotheses. In [173], Pherson and
Heuer Jr. argue that, when used properly, the above techniques reduce: confirmation
bias because analysts are forced to generate more than one hypothesis, which might
not necessarily be the hypothesis they initially believe to be true; the anchoring effect
because analysts cannot assume that the lead hypothesis is always the proper starting
point for an analysis; premature closure of analysis when an analyst identifies a hypoth-
esis that is consistent with all the available information and concludes their analysis;
and desire for uncertainty reduction and coherence such that analysts are supposedly
not fooled into mapping the randomness of events to systematic and coherent stories
that explain data. However, whether these benefits apply to analysts’ analysis is ques-
tionable due to the lack of empirical studies to test these claims.

2.1.5.2 Hypothesis Evaluation

The intelligence community employs a variety of analytical techniques for hypothesis
evaluation. As mentioned in Section 2.1.1, these methods can be split into the either di-

agnostic, contrarian, or imaginative thinking techniques [223]. Diagnostic techniques
employ diagnostic reasoning which, in short, is the process of trying refute information
and hypotheses instead of trying to confirm them. Examples of diagnostic techniques
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Figure 2.5: The Multiple Hypotheses Generator™ (adapted from [173]).

are the: Key Assumptions Check [172], which helps analysts list and evaluate the as-
sumptions underpinning their analysis; Quality of Information Check [223], which en-
ables analysts to evaluate the completeness and uncertainty in sources of information;
Indicators of Change [223], which is where analysts regularly make observations to
monitor events, track targets, and identify any unanticipated change; and the Analysis

of Competing Hypotheses [101], which is a method of evaluating multiple hypotheses
and discussed in more detail later on in this subsection.

Contrarian techniques aim to challenge the current thinking and mental models of
analysts. Examples of contrarian techniques are: Devil’s Advocacy [109, 199], which
allows analysts to challenge a single, strongly-held view by providing coherent coun-
terexamples; Team A / Team B [223], which splits analysts into two (or more) teams
who debate about two (or more) competing hypotheses; High-Impact/Low Probability

Analysis [172], which helps analysts think about rare events, such as a so-called black
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swan event, and the consequence of such an event; and “What If?” analysis [172],
which assumes that a future positive or negative event has occurred and works back-
wards to explain the sequence events that would be required for that event to happen.

Imaginative thinking techniques are crucial for stimulating innovative ideas, solu-
tions, and hypotheses. Examples of imaginative thinking techniques are: Brainstorm-

ing [162, 172], which is a group task where analysts are given the freedom to generate
new ideas and concepts; Outside-In Thinking [172], which is employed by analysts to
identify driving forces and trends for a given topic so that they can assess a problem in
light of outside factors; Red Team Analysis [223], which is where a team of analysts de-
bate and try to model how an adversary would think about a scenario; and Alternative

Futures Analysis [198], which is where analysts systematically explore the different
ways that a situation can unfold.

The work proposed throughout the rest of this thesis draws upon one diagnostic
technique, namely the Analysis of Competing Hypotheses. As such, the technique is
introduced in the remainder of this subsection, along with some discussion pertaining
to its benefits and limitations.

The Analysis of Competing Hypotheses. I now examine the Analysis of Competing
Hypotheses (ACH) in more detail. The ACH is one of the earliest and, probably, most
famous analytical tools, developed by Heuer Jr. in the 1970s [101]. It is a nine step
procedure that analysts follow when evaluating a set of MECE hypotheses against a
set of information, compiled during the analysis phase of the Intelligence Cycle, as
discussed in Section 2.1.1. Put simply, the ACH structures hypotheses (as column
headers) and information, evidence, and assumptions (as row headers) in the form of
a matrix, where the consistency of row entries is denoted in each cell. Analysts then
count how many row entries were inconsistent with each hypothesis which enables
the quantification of the relative probabilities of each hypothesis within an analysis.
Pherson and Heuer Jr. state that the technique can be employed by individual analysts
or a team [173]. I present the nine steps involved in the ACH below.

1. Identify hypotheses: Identify the set of MECE hypotheses.

2. List information: List the significant and relevant information, evidence, any
assumptions, and missing information that one would expect to be present if a
hypothesis were true.

3. Analyse diagnosticity: Create a matrix and assess whether each row entry (i.e.,
the information, evidence, assumptions, and missing information) is consistent,
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inconsistent, or not applicable with each hypothesis within the analysis.

4. Review differences between analysts: Review where there is disagreement be-
tween analysts and decide whether consistency scores should be changed.

5. Refine hypotheses: Refine the matrix by either removing or combining super-
fluous or overlapping hypotheses, respectively.

6. Draw tentative conclusions: Make tentatively-held judgements as to the proba-
bility of hypotheses by counting the number of inconsistent row entries for each
hypothesis. The most likely hypothesis is the one with the fewest inconsisten-
cies.

7. Analyse sensitivity: Analyse the sensitivity of the conclusions to identify how
dependent the likelihood of each hypothesis is on the items of information, evi-
dence, and assumptions.

8. Report conclusions: Report the probabilities of the hypotheses, as well as diag-
nostic row entries, to stakeholders, decision makers, or commanders.

9. Identify indicators for future observation: Identify indicators and milestones
for future observations to ascertain whether a situation has evolved or deterio-
rated, such that the probabilities of hypotheses change.

The ACH has both advantages and disadvantages, with more recent literature high-
lighting many of the technique’s problems. One of the advantages of the ACH is that it
is easy to implement, especially in the context of intelligence analysis which is a cogni-
tively demanding task – see Palo Alto Research Center’s ACH software [164]. Another
is that results from analyses are explainable due to the matrix instantiated in step three.
Finally and probably the main benefit of the ACH, according to Pherson and Heuer
Jr., is that the technique reduces the confirmation biases present during analyses as an-
alysts evaluate the likelihood of hypotheses based on the number of row entries that
are conflict in with them [173, p. 164-165]. However, the claim that the ACH reduces
confirmation bias is somewhat weak because Pherson and Heuer Jr. do not provide
any accompanying empirical evidence to support that claim. Moreover, a lot of the
studies within the literature that tested whether the ACH reduced confirmation bias did
not show any statistical significance to that effect [243, 141], apart from in one study
where the ACH reduced confirmation bias of participants with no prior experience of
analytical techniques or intelligence analyses [129].
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Another major issue with the ACH is that it forces analysts to view row entries in
isolation which, in turn, reduces the amount of belief chaining in the assessment of hy-
potheses. This can most likely be attributed to the topology of the matrix instantiated
during analyses. However, considering items’ consistency or otherwise with a hypoth-
esis in isolation does not make complete sense because there might be cases where, for
example, three row entries are deemed not applicable to a hypothesis when considered
alone, but are in conflict with that same hypothesis when linked together. This is some-
what similar to a linked argument or collective attack, with a group of premises that
either support or conflict with a hypothesis (or conclusion), respectively, as discussed
more in Section 2.3.3.1.

Analysts also have to make many judgements about the consistency or otherwise
of row entries against hypotheses. For example, an analyst would need to make one
hundred judgements for an analysis with five hypotheses and twenty row entries. In the
ACH’s current state, the judgements made about each cell are ternary (i.e., each cell is
deemed either consistent, inconsistent, or not applicable with a hypothesis). However,
with some proposals arguing for more expressive diagnosticity scores [115], analysts
might be required to assign, say, three probabilities to each cell within the matrix at
some point in the future, which would not be practical with the ACH’s current setup.

A further issue with ACH is that it models hypotheses using a flat structure, and
does not account for the hierarchical nature of hypotheses. For example, a main hy-
pothesis may have a number of sub-hypotheses that must be shown to be true for the
overall hypothesis to be true. By flattening the hypotheses within the ACH, some of
the nuanced reasoning about hypotheses and their interdependence is lost.

One final point which gives rise to the view that the ACH is not fit for operational
use, in its current state, is that the procedure has been altered by the United Kingdom’s
Department for Defence Intelligence, in their book, titled Quick Wins for Busy Analysts

[222]. They deviate from the original ACH process by employing both consistency and
inconsistency scores in a coarse count to determine the probability of hypotheses. They
also ask analysts to assign a credibility score, on a traffic light scale (i.e., red, yellow,
and green), to each row entry. However, they do not utilise the uncertainty provided
the credibility score, which means probabilities of hypotheses do not incorporate the
uncertainty of row entries or their sources. Thus, the only tangible distinction between
Heuer Jr.’s ACH and the process within the book, Quick Wins for Busy Analysts, is
that they compute the relative probability of hypotheses by summing conflicting and
confirmatory row entries.

While the orthodoxy of intelligence analysis is based on the scientific method, ac-
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cording to Janes4 analysts orthopraxy is such that they provide assessments of evolving
situations, using evaluative techniques such as the ACH. However, these judgements
are rarely accompanied by the relevant reasoning required to understand why an ana-
lyst made a particular judgement. This makes the work of replicating and automating
this reasoning task, using, for example, machine and deep learning, or computational
argumentation, extremely difficult. Future tools for intelligence analysis will require
both the domain expertise of analysts and academic rigour of researchers to draw out
the reasoning underpinning analyses.

2.2 Argumentation Theory

In this section, I introduce argumentation theory, touching upon the study of it, dating
from antiquity to contemporary times, where all approaches share a common goal: to
formalise patterns of reasoning to better understand how we, as humans, think and
communicate through the exchange of arguments.

The study of argumentation dates back to classical times, where the earliest studies
of argumentative practice were of the ancient Grecian democracy. Athenians partic-
ipated in rich debate, in the form of long speeches, surrounding decisions pertaining
to the governance of the city, where the importance of a citizen correlated with the
persuasiveness of their argumentation [96]. Aristophanes, in his comedies Wasps (422
BC) [12] and Clouds (423 BC) [104], satirised the use of argumentation to manipulate
juries and justify contentious claims, such as reneging on repayment of debts or even
justifying the assault of parents by children. Plato, who was a child when these plays
were performed, later advanced a more critical stance on Athenian rhetoric, arguing
that debate should not merely aim at persuasion but rather seek truth of a particular
topic through debate [105]. Plato was interested in dialectial encounters where speak-
ers, with different points of view about a subject, would try to arrive at the truth through
reasoned argumentation. While Plato was arguably one of the first to examine the me-
chanics of dialogues between interlocutors, Aristotle’s last book, called Sophistical

Refutations, within the series titled Topics, was one of the first attempts within the lit-
erature to formalise certain types of dialectical encounters, where agents, specifically a
questioner and an answerer, engaged in the exchange of propositions [13]. The ques-
tioner’s goal in this dialogue game was such that they would, first, extract a starting

point, or a thesis, from the answerer and then the questioner would try to refute the an-
swerer’s position. The answerer’s only objective was to defend their starting position

4Personal communication on 18th October 2022.
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from attack within a given time frame.
The study of dialectics in ancient times provides some insight into the inspiration

for studying argumentation today. Questions – such as how to successfully defend a

thesis from attack? Or what is a good starting point? Or which proposition should one

attack to win the debate? – are still important today because argumentation is domain-
dependent so, for example, a successful attack in one discussion might not apply in
another. As such, argumentation was defined by Eemeren et al. in [76] as follows:

“Argumentation is a communicative and interactional act complex aimed

at resolving a difference of opinion with the addressee by putting forward

a constellation of propositions the arguer can be held accountable for to

make the standpoint at issue acceptable to a rational judge who judges

reasonably.” [76, p. 7]

The irrationality of human agents makes argumentation within debate somewhat
messy, in the sense that one might put forth a myriad of propositions in an effort to
defend standpoint upon which they firmly believe, especially when that initial opinion
is not held by another reasoner.

While argumentation is often employed within contexts where there is a difference
of opinion between human agents, it features in all aspects of our lives. An argument,
in its simplest form, consists of a premise (or a reason) that supports a conclusion (or a
claim). For instance, imagine that a person planned to go for walk and it was raining.
That person might sensibly say to themselves that I should take a coat because it is

raining (Figure 2.6), which is, in fact, an argument put forth within the bounds of their
mind. That same person might own more than one coat such that they reason using
arguments containing preferences to decide which coat to wear. Finally, ending this
simple example, that person might enter a shop whilst on their walk and see two coats
that they would like to buy, but one of them was made in an unethical manner such
that the notion of values is incorporated into their reasoning about which coat to buy.
While there are many more trivial examples that the reader could think of, such as
which conserve to spread on their toast before work in the morning or how much milk
to put in their coffee, it is easy to see that argumentation plays an important role in the
thoughts, actions, and discussions that we, as humans, are frequently involved in.

It is raining I should take a coat
Therefore

Figure 2.6: A simple argument containing a single premise supporting a conclusion.
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Arguments put forth in situations within our daily lives can be far-more complex
than a single premise supporting a conclusion. An argument, therefore, can contain a
set of premises, ranging from one to many, that leads to a single conclusion. Although
the inference between a set of propositions can be different depending on the circum-
stance, much work within the literature has been completed to map arguments into
commonly used inference patterns, which I introduce in more detail in Section 2.2.1.

Argumentation is an extremely useful tool in contexts where the ground truth can-
not be used, such as in domains where there is incomplete, uncertain, or conflicting
information, like within an intelligence setting. Arguments are tentative proofs for
propositions [81, 124] that are capable of aiding defeasible reasoning, where new ar-
guments can be instantiated and reasoned with non-monotonically as new information
comes to light. The premises contained within an argument offer a set of presumably-
true reasons to believe the claim being made. Usually, the conclusion of an argument
deductively holds, if an audience accepts the premises and the inference rule between
those premises and the conclusion. However, a listener might reject or attack one or
all of the premises, the inference rule, or conclusion. Argumentation, therefore, is
a subjective process that varies from person to person and incorporates a reasoner’s
knowledge and beliefs.

While there are many approaches to represent arguments within the literature, this
thesis employs argumentation schemes for presumptive reasoning and abstract accounts
of argumentation, which are discussed in more detail later in this section and in Section
2.3, respectively. Arguments are modelled using a set of premises, an inference rule,
and a conclusion. The defeasible nature of arguments means that these schemes are not
deductively strict, in that although a conclusion is presumed true when the premises
hold, that same conclusion might be found to be false for the same set of true premises.

Argumentation has been studied for millennia, as I discussed earlier in this section.
A recent example of an argumentation scheme is Toulmin’s graphical depiction of an
argument, as shown in Figure 2.7, which allows for a more expressive set of premises.
Toulmin’s description of an argument discretises its constituent propositions into the
six following elements:

• a claim which is synonymous with the conclusion of an argument;

• the grounds which are the premises, in the form of evidence and facts, which
support the claim;

• the warrant which is an implicit or explicit assumption that links the grounds to
the claim;
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• a qualifier which assigns a strength to a claim;

• a rebuttal which is a proposition that is in conflict with the claim; and

• the backing which provides additional support for the warrant.

In Toulmin’s model, the fundamental propositions within an argument are the claim,
grounds, and warrant. However, the qualifier, rebuttal, and backing can be added to the
argument, if necessary. For instance, the assertion that one’s claim might not always
be true, in the case of an added qualifier, builds credibility. Alternatively, stating that
there are multiple conclusions to be drawn from an argument, in the case of a rebuttal,
paints the arguer as an unbiased thinker.

Grounds

Warrant

Backing

Qualifier Claim

Rebuttal

Figure 2.7: A depiction of Toulmin’s Model of Argument [217].

Toulmin’s model is not without its issues. Conflicts within the schema are not
well-defined such that the only proposition that can be attacked is the claim, through
use of a rebuttal. In real-world argumentation, propositions can conflict with a claim
(in the form of a rebutting attack), premise (in the case of an undermining attack),
or the inference between a set of premises supporting a conclusion (in the case of an
undercutting attack), which are concepts that I discuss in more detail in Section 2.3.2.1
when introducing the ASPIC+ framework [177, 150].

Toulmin’s account of argument could be employed for the instantiation of argu-
ments within intelligence settings. It is possible to represent hypotheses as claims
supported by observations (or grounds), in accordance with Pherson and Heuer Jr.’s
definition of a hypothesis, as stated in Chapter 1. In addition to this, the qualifier in
Toulmin’s model of argument could be employed to communicate the strength (i.e.,
probability or uncertainty) of a hypothesis (or claim) that features in a finished intel-

ligence product, as discussed in Section 2.1.4. However, Toulmin’s schema does not
allow for the description of uncertainty relating to the grounds supporting a claim which
is ever-present in data within intelligence analysis. Although Toulmin’s seminal model
of argument has been highly influential, it is not suitable for use within intelligence
settings due to the aforementioned reasons.
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Since Toulmin’s germinal idea, many more representations of arguments have been
proposed, such as Walton’s argumentation schemes [235], along with their accompa-
nying critical questions which describe the common attacks between propositions and
inference rules. In the next subsection, I introduce Walton’s argumentation schemes
and examine one scheme in more detail – the argument from cause to effect [236]
– because of the link between that scheme and the reasoning involved in arguments
containing hypotheses.

2.2.1 Argumentation Schemes

Argumentation schemes are powerful tools that can model deductive as well as induc-
tive arguments, and are also able to model defeasible, presumptive, and abductive argu-
ments, which do not possess an inductive or deductive form. Argumentation schemes
are an abstract representation of arguments that capture the stereotypical patterns of
inference between a set of premises which support a conclusion. The schemes are
templates that model propositions and commonly-used inference rules in a variety of
domains, such as in legal [248, 24] and intelligence contexts [215], amongst others.

More pertinently and inline with the topics addressed in this thesis, the schemes
have been shown to be capable of enabling hypothetical reasoning, which is a type
of reasoning that intelligence analysts conduct on a regular basis when, for example,
assessing what might happen in the future using available data, or deciding whether
they have identified the set of all plausible hypotheses. In [19], Bench-Capon and
Prakken model the reasoning between a proponent and opponent in a specific legal
case (California vs. Carney), and explore whether a warrant would be needed to search
a vehicle by asking a series of hypothetical questions pertaining to the facts of the
case. This instance of reasoning is somewhat similar to the What If? analysis [172], as
discussed in Section 2.1.5, where intelligence analysts must envision a future scenario
and then work backwards, plotting the course of events required to get to that future
point.

Some of the first and most important attempts to formalise these patterns of rea-
soning were proposed by Hastings in [98], Perelman and Olbrechts-Tyteca in their
book titled The New Rhetoric [171], and Kienpointner in [121]. Since then, Walton’s
vast body of work on argumentation schemes [235] has paved the way for the inter-
disciplinary study of computational models of argument within different domains by
enabling researchers to identify and represent arguments. The schemes proposed by
Walton are accompanied by a set of critical questions which enables the identification
of attacks between arguments; thus, allowing for the evaluation of the acceptability
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of those arguments in relation to others within that specific problem setting. Due to
complex nature of language and argumentation, especially within intelligence settings,
there are a plethora of argumentation schemes that have been identified by this research,
such as the argument from cause to effect [236], argument from negative consequences
[237], practical reasoning schemes [241], argument from (falsification) of evidence to
a hypothesis [239], argument from position to know [240], argument from established
rule [238], etc. The aforesaid schemes were employed in the argument annotation of
a real-world example and a description of that process is provided in the beginning
of Part II. In the subsection to follow, I only consider the argument from cause to ef-
fect because it was employed to capture the reasoning underpinning hypotheses in the
introduction to Part II and forms the basis of the scheme proposed in Chapter 3.

2.2.1.1 The Argument from Cause to Effect

As stated in Chapter 1, Pherson and Heuer Jr. define a hypothesis as a testable and
falsifiable statement that explains available data in a clear and accurate manner. Now, I
turn to a more recent, argumentation-based definition of a hypothesis, given by Toniolo
et al. in [216]:

“A hypothesis in intelligence analysis is composed of activities and events
that show how the situation has evolved. The argument from cause to
effect forms the basis of these hypotheses.” [216, p. 785]

Here, Toniolo reflects Pherson and Heuer Jr.’s definition of a hypothesis, where
the reasoning for (or against) a hypothesis is based on the information available to
an analyst. The concluding sentence in the quote above highlights that the reasoning
between a set of information and a hypothesis can be modelled through the argument
from cause to effect [236], which is presented below:

Major Premise: Generally, if A occurs, then B will (might) occur.

Minor Premise: In this case, A occurs (might occur).

Conclusion: Therefore, in this case, B will (might) occur.

Walton identifies three critical questions for this scheme:

WCQ1: How strong is the causal generalisation?

WCQ2: Is the evidence cited (if there is any) strong enough to warrant
the causal generalisation?
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WCQ3: Are there any other causal factors that could interfere with the
production of the effect in the given case?

The argument from cause to effect, with its accompanying set of critical questions,
provides a good abstraction of the inference between a set of information supporting a
hypothesis. Data collected and transformed into information, through Processing and

Exploitation techniques within the Intelligence Cycle (Section 2.1.1), is synonymous
with a cause, or set of causes, where its effect is the assertion of a hypothesis which
explains those data. The defeasible nature of the scheme is such that as more data is
collected, new arguments containing hypotheses can be instantiated and reasoned with.
Furthermore, the critical questions provided should enable a reasoner to seriously con-
sider whether there are any other items of information, evidence, and assumptions or
arguments that attack either: the inference between those premises and the hypothesis
they support (WCQ1); the information, evidence, and assumptions (WCQ2); or an-
other causal factor which supersedes the initial generalisation (WCQ3). The scheme
does not provide any critical questions pertaining to potential attacks on the conclusion
of the argument. However, in this instance, it is easy to see that, within the context of
intelligence analysis, symmetric attacks could sensibly be instantiated between the set
of MECE hypotheses because that set contains exhaustive and non-overlapping out-
comes such that if one hypothesis were found to be true, then all others would be false.
Furthermore, the scheme touches upon a notion of uncertainty in all three propositions
(i.e., in the Major Premise, Minor Premise and Conclusion) through the assertion that
something will or might occur. To employ such a scheme within an intelligence set-
ting, the communication of probability and uncertainty in each item of information,
evidence, and assumptions, as well as the hypothesis they support, is paramount (Sec-
tion 2.1.4). In Chapter 3, I provide a more detailed examination of the critical questions
and the notion of uncertainty in propositions for this argumentation scheme, resulting
in a proposed adaption of the scheme so that it is suitable for use within the intelligence
domain.

2.3 Computational Argumentation

The field of computational models of argument is a growing interdisciplinary area of
research that spans philosophy, linguistics, computer science, and psychology. The
fecundity of ideas within the literature of this youthful field can be divided into a tri-
chotomy that captures a diverse range of models for argumentation, based on the do-
main and type of argumentation being assessed. In [21], Bentahar et al. organise the
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three distinct types of model into the following:

• Monological models, which study the internal structure of arguments and coun-
terarguments generated from a knowledge base or provided by a third party,
where the goal is study the connection between a set of premises and a con-
clusion, linked by an inference rule. These models examine the different compo-
nents within an individual argument such that they focus on the micro-structure
of arguments, hence the name monological, with both Toulmin’s graphical de-
piction of arguments (Section 2.2) and Walton’s argumentation schemes (Section
2.2.1) falling into this category.

• Dialogical models focus on the interchange of attacks between arguments, pay-
ing no attention to the internal structure of arguments. Dialogical models are
concerned with the macro-structure of arguments and their acceptability such
that these models are referred to as defeasible reasoning systems.

• Rhetorical models focus on discourses that are rhetorically argumentative, pay-
ing attention to an audience’s perception of an orator’s argumentation, rather than
to achieve general acceptability, as is the case with monological and dialogical

models.

For the remainder of this section, I introduce a particularly influential dialogi-
cal model – Dung’s work on abstract argumentation frameworks – and explain how
to conduct defeasible reasoning to identify admissible sets of arguments, using both
extension- and labelling-based semantics, in Section 2.3.1. Then, in Section 2.3.2, I
examine the topic of structure argumentation, which is where both monological and
dialogical models coincide, by introducing the ASPIC+ framework, the Argument In-
terchange Format, and show how to transform annotated argument data into Dung’s
formalism. Finally, I study the topic of argument mining, in Section 2.3.3, focusing
mainly on manual approaches, but also consider automated methods, with a view to as-
sessing the feasibility and addressing the limitations of argument mining, in its current
stage of development within the literature, for intelligence analysis.

2.3.1 Abstract Argumentation Frameworks

Dung’s seminal work on abstract argumentation frameworks made a significant con-
tribution to the field of computational argumentation and non-monotonic reasoning
[70]. The underlying notion of his proposal was that arguments and attacks between
them can be modelled using a directed graph, where the arguments and attacks are
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represented as nodes and edges, respectively. The acceptability of sets of arguments
is determined by employing a variety of semantics, where the semantics chosen by a
user depends on how sceptical they desire their reasoning to be. This abstraction has
been extended to frameworks that can model: support as well as attack [48]; prefer-
ences [8] and values [20]; collective attacks from sets of arguments [156]; collective
supports and attacks based on evidence [161]; temporal argumentation frameworks,
which consider availability intervals for arguments, attacks, and their acceptability [55,
56, 57]; probabilistic argumentation frameworks, such as in the epistemic [212, 213]
and constellation [69, 133] approaches, which quantify the uncertainty in arguments
and attacks, and thus incorporate these uncertainties into the evaluation of admissible
sets of arguments; weighted argument systems [71] that can model the relative strength
of attacks through the incorporation of the notion of an inconsistency budget, which
represents how much inconsistency is tolerable within an argumentation framework;
and abstract dialectical frameworks [35], which provide a richer explanation of the
acceptability of arguments through use of an acceptance condition.

Below I provide the formal definitions for Dung’s original abstract argumentation
framework.

Definition 2.1 A (finite) Dung argumentation framework G is a tuple (A ,R) which
contains a set of arguments A and binary attack relations R ⊆ A ×A between ar-
guments. For two arguments a1,a2 ∈ A , the argument a1 attacks a2 if and only if
(a1,a2) ∈R.

An example of a Dung-style argument graph, comprised of arguments A (Equation
2.1) and relations R (Equation 2.2), is presented in Figure 2.8.

A = {a1,a2,a3,a4,a5} (2.1)

R = {(a1,a2),(a2,a1),(a3,a1),(a4,a2),(a4,a5),(a5,a4)} (2.2)

a1

a3 a4

a2

a5

Figure 2.8: An example of a Dung-style abstract argumentation framework.



36 2.3 COMPUTATIONAL ARGUMENTATION

The evaluation of abstract argumentation frameworks is computed using semantics,
which are operations that group sets of admissible arguments into either a set of exten-
sions or labellings. Admissible sets of arguments adhere to two fundamental properties:
conflict-freeness and acceptability. A set of arguments that possesses the characteristic
of conflict-freeness is a set which contains arguments that do not attack each other.

Definition 2.2 Let G = (A ,R) be a Dung argumentation framework and S ⊆ A be
a set of arguments. The set S is conflict-free if and only if ∄(a1,a2) ∈ R where
a1,a2 ∈ S.

The notion of acceptability considers whether an argument is defended against at-
tack by the arguments in its set. An argument within a set of arguments is defended if
at least one of the arguments within the set attacks an attacker of that argument. An
argument is referred to as acceptable with respect to its set, if and only if it is defended
by an argument within that set.

Definition 2.3 Let (A ,R) be an argumentation framework and S ⊆ A be a set of
arguments. An argument a1 ∈ S is acceptable with respect to S if and only if ∀a2 ∈ A

such that (a2,a1) ∈ R, ∃a3 ∈ S such that (a3,a2) ∈ R.

Since the inception of Dung’s germinal contribution, many further semantics that
uphold the principles of conflict-freeness and acceptability have been proposed [17].
The multitude of semantics in the literature provide a method of automated reason-
ing which changes depending on how sceptical the user is. Semantics can be broken
down into two categories, namely extension- and labelling-based approaches. In short,
both methods present equivalent outputs from semantic evaluation, however they are
represented in different ways. Extension-based semantics output subsets of admissible
arguments, called extensions, whilst labelling-based methods assign an argument label
to each argument within an argumentation framework, where the set of labelled argu-
ments are stored within sets of labellings. Both formalisms, extensions and labellings,
were shown to be analogous to each other [43] such that they contain the same sets of
conflict-free and acceptable arguments for an evaluation of a given framework, how-
ever it is the way in which these data are represented which differs. Both extensions
and labellings were utilised in the work presented throughout this thesis. As such, both
approaches are introduced below, starting with extension-based semantics.

Definition 2.4 For an argumentation framework G = (A ,R) and a set of arguments
S⊆A , the set S is referred to as a



LITERATURE REVIEW 37

• Complete extension if and only if S is conflict-free and ∀a1 ∈ S, a1 is acceptable
with respect to S; thus, a complete extension is an admissible one;

• Grounded extension if and only if S is a minimal (with respect to set inclusion)
complete extension;

• Preferred extension if and only if S is a maximal (with respect to set inclusion)
complete extension;

• Stable extension if and only if S is a preferred extension and ∃a1 ∈ S such that
(a1,a2) ∈R, ∀a2 ̸∈ S.

All the semantics introduced in Definition 2.4 relate to each other and adhere to the
two fundamental characteristics, acceptability and conflict-freeness. Sets of admissible
arguments form the foundation on which other acceptable sets of arguments can be
discovered, such that every stable extension is a preferred extension, every preferred or
grounded extension is a complete extension, every complete extension is an admissible
set of acceptable and conflict-free arguments. The different types of semantics allows
computational agents to carry out sceptical and credulous reasoning, which will be
discussed later in this section. For example, sceptical reasoning is conducted through
computation of extensions using grounded semantics that returns only one extension
which contains the intersection of arguments that feature in all the complete extensions.
In the running example presented in Figure 2.8, there were three complete extensions

{a2,a3,a5}, {a3,a4} and {a3}, (2.3)

where the first two sets of arguments are preferred and stable extensions, and the last
set, containing the argument a3 only, is the grounded extension.

Moving onto to labelling-based semantics, which were first proposed within the ar-
gumentation literature by Caminada in [42, 41], and subsequently formalised by Cami-
nada and Gabbay in [43]. The general notion of labelling-based semantics is that, while
admissibility – computed using complete, grounded, preferred, or stable semantics –
was defined in terms of sets of arguments, it is also possible to employ argument labels
to describe the admissibility of all arguments within a framework.

Definition 2.5 Let G = (A ,R) be an argumentation framework and S⊆A be a set of
arguments. A labelling is a total function L (S) : S 7→ LAB that assigns all arguments
a ∈ S to a label l ∈ LAB, where LAB = {IN,OUT,UND}.
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For the purpose of introducing labelling-based semantics, the set of arguments that
attack the argument ai ∈A is defined in Equation 2.4.

Att(ai) = {a j | (a j,ai) ∈R} (2.4)

Similar to extension-based semantics, a labelling can be complete, grounded, pre-
ferred, or stable. A complete labelling corresponds to a complete extension if it follows
Definition 2.6.

Definition 2.6 For an argumentation framework G = (A ,R) and a labelling function
L (A ) : A 7→ LAB, a labelling is referred to as a complete labelling if and only if for
every ai ∈A , it holds that:

1. if L (a j) = OUT, ∀a j such that a j ∈ Att(ai), then L (ai) = IN;

2. if ∃a j ∈ Att(ai) and L (a j) = IN, then L (ai) = OUT.

Due to the fact that a labelling is a total function, arguments ai ∈A that are neither
labelled IN nor OUT are labelled UND.

Depending on the type of semantics employed, the labelling function can return
more than one more labelling. Labelling functions that produce more than one la-
belling, containing argument labels for all arguments within argument graphs, feature
in some of the techniques, tools, algorithms introduced in Chapters 5 and 6 of this the-
sis. With a slight abuse of notation, a labelling of an argumentation framework which
produces more than one labelling is a set of argument labels referred to as

LN(G ) = {Li(A )}N
i=1 (2.5)

where LN(G ) is a set of N labellings and Li(A ) is the i-th labelling containing argu-
ment labels for all arguments within the framework.

As with extension-based semantics, the definition of a complete labelling can be
employed in the definition of other types of labellings.

Definition 2.7 Let G = (A ,R) be an argumentation framework and LN(G ) be a set
of labellings. A labelling Li(A ) ∈LN(G ) is defined as:

• grounded if and only if it is a complete labelling with a maximal set of arguments
labelled UND;

• preferred if and only if it is a complete labelling with a maximal set of arguments
labelled IN; and
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• stable if and only if it is a complete labelling where the set of arguments labelled
UND is an empty set.

Continuing the running example for the argumentation framework presented in Fig-
ure 2.8 and following the constraints in Definition 2.7, the second labelling L2(A )

presented in Table 2.2 is a grounded labelling because it possesses a maximal set of
arguments labelled UND. Furthermore, the argument a3 is the only argument within
the grounded extension (i.e., {a3} in Equation 2.3) and it is also the only argument
labelled IN within the grounded labelling. The first and third labellings, L1(A ) and
L3(A ), are both preferred and stable labellings because they contain a maximal set of
arguments labelled IN and the set of arguments labelled UND is an empty set, respec-
tively. Looking back to the sets of preferred and stable extensions (i.e., {a2,a3,a5}
and {a3,a4} in Equation 2.3), the arguments that feature in both extensions are also
labelled IN within the first and third labelling. Thus, it is clear to see that complete
extensions and labellings form the foundations for all other extension- and labelling-
based semantics, respectively. Furthermore, the set of complete, grounded, preferred,
and stable labellings are equivalent to their extension-based counterparts.

Table 2.2: The complete labellings of the argumentation framework G (Figure 2.8).

Labellings, L (G ) a1 a2 a3 a4 a5

L1(A ) OUT IN IN OUT IN

L2(A ) OUT UND IN UND UND

L3(A ) OUT OUT IN IN OUT

Although the computation of a semantics enables the evaluation of the acceptabil-
ity of arguments within an argumentation framework, it does not wholly capture the
justification status of arguments across the sets of extensions or labellings. For in-
stance, in the case of extension-based semantics, an argument contained in all the sets
of extensions might be viewed as a stronger argument because it is both acceptable
and conflict-free across all extensions. For labelling-based semantics, an argument that
possesses the same argument label across the set of all labellings might cause a hu-
man agent to question the acceptance status of such an argument. On the contrary, an
argument that only features in one extension out of a set of extensions or possesses
an argument label that only features in one labelling across a set of labellings might be
deemed weaker by human agent due to there being less reasons to believe it. The notion
of sceptical and credulous acceptance mathematically defines the two aforementioned
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concepts with regards to abstract argumentation, where an argument’s justification sta-
tus depends on its membership to sets within the set of extensions, or an argument’s
labels across a set of labellings.

Definition 2.8 (Sceptical / Credulous Acceptance in Extension-Based Semantics).
Let G = (A ,R) be an argumentation framework and E be a set of extensions discov-
ered through computation of some semantics S. An argument ai ∈A is:

• sceptically accepted if and only if ai ∈ e j, ∀e j ∈ E ;

• credulously accepted if and only if ∃e j ∈ E such that ai ∈ e j.

Definition 2.9 (Sceptical / Credulous Acceptance in Labelling-Based Semantics).
Let G = (A ,R) be an argumentation framework, LN(G ) = {Li(A )}N

i=1 be a set of
labellings discovered through computation of some semantics S, and l ∈ LAB be the
same argument label l out of the set of possible labels LAB, where Li(a j) denotes the
label of the j-th argument in the i-th labelling. The argument a j ∈A is:

• sceptically labelled if and only if Li(a j) = l, ∀Li(A ) ∈LN(G );

• credulously labelled if and only if ∃Li(A ) ∈LN(G ) such that Li(a j) = l.

Arguments that are labelled IN across all labellings are referred to sceptically-IN,
whereas arguments that are labelled IN for one labelling are referred to as credulously-

IN. This naming convention also extends to arguments labelled OUT and UND.
An interesting point to note is that semantics or argument graph topologies which

produce a single extension or labelling are where sceptical and credulous acceptance
coincide.

Dung’s abstract argumentation frameworks are an excellent choice of model for
use within intelligence scenarios. The frameworks enable automated and defeasible
reasoning with conflicting arguments, where those arguments might contain propo-
sitions that instantiate items of information, evidence, assumptions, hypotheses, and
even the inference between them. The defeasibility of abstract argumentation frame-
works is a consequence of those frameworks being directed graphs where arguments
can be added or removed and the semantics computed again, ensuring that new sets of
conclusions are based on the most recent data, as new information comes to light. Fur-
thermore, techniques employed within the intelligence community, such as the ACH
(as discussed in Section 2.1.5), try to reduce confirmation bias by assessing the likeli-
hood of hypotheses as a function of how inconsistent each hypothesis was with each
row entry in the matrix. Dung’s abstract formalism mirrors this approach by assessing
the acceptability of arguments using attacks between arguments only.
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2.3.2 Structured Argumentation

While Dung’s seminal account of abstract argumentation allows for the identification
of sets of admissible arguments, its level of abstraction means it pays no attention to the
internal structure and acceptability of those arguments. Although this characteristic en-
ables the evaluation of Dung-style argument systems and the acceptability arguments
thereof, it precludes the formalism alone from being employed in real-world appli-
cations and situations. Thus, structured argumentation was developed to formalise
arguments’ internal structure and acceptability.

In structured argumentation, arguments and attacks are instantiated using a for-
mal language. The arguments within structured argumentation frameworks contain
premises and conclusions of arguments which are made explicit and contained within
the formal language, where the inferences and attacks between these propositions
are formally defined. There are many approaches to structured argumentation, such
as assumption-based argumentation frameworks [30], defeasible logic programming
[202], the Carneades model [88] of argument structure and evaluation, and the ASPIC+

framework [177, 150]. However, only the latter is introduced as it was the only ap-
proach employed in the testing and evaluation of tools and algorithms that utilised
abstract argumentation applied to real-world problems in the subsequent chapters of
this thesis.

2.3.2.1 The ASPIC+ Framework

One such structured framework is the ASPIC+ framework, which adopts an intermedi-
ate level of abstraction to provide an abstract account on the acceptability of structured
arguments [177, 150]. The ASPIC+ framework can model structured argumentation
problems using strict and defeasible inference rules, with preferences between defea-
sible rules, as well as a knowledge base which contains sets of necessary axioms (or
facts), ordinary premises, and assumptions. However, I restrict the ASPIC+ framework
so that it is only comprised of a knowledge base containing the set of ordinary premises
and defeasible inference rules without preferences, as they are the only conditions that
pertain to the work presented throughout this thesis.

Definition 2.10 ([177]) An argumentation system is tuple AS = (L ,− ,R) where

• L is a logical language;

• − is a contrariness function − : L 7→ 2L ; and

• R is a set of defeasible rules.
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Definition 2.11 ([177]) Let L be a logical language and − be a contrariness function,
where φ and ψ are statements within that language, such that φ ,ψ ∈L , and φ and ψ

are sets containing statements that conflict with φ and ψ , respectively. It follows that

• φ is called a contrary of ψ if and only if φ ∈ ψ;

• φ and ψ are contradictory if and only if ψ ∈ φ and φ ∈ ψ , denoted by φ =−ψ .

The arguments formed using the ASPIC+ framework are defined as inference trees
which are created by applying defeasible inference rules on objects within the logical
language. I refer to p⇒ q as a defeasible rule r ∈R, where p is the antecedent and q

is the consequent.

Definition 2.12 ([177]) For the restricted version of an ASPIC+ argumentation system
(L ,− ,R) presented in this thesis, a knowledge base K is a set of ordinary premises
Kp, such that K ⊆L and K = Kp.

Definition 2.13 ([177]) An argumentation theory is a pair AT = (K ,AS) where K is
a knowledge base containing the set of ordinary premises Kp only, such that K =Kp,
and AS is an argumentation system.

Arguments are derived from the knowledge base, where each argument A is ob-
tained from the set of ordinary premises within the knowledge base Kp of an argumen-
tation theory AT ; Prem(A) returns all the ordinary premises within Kp which support
A, Conc(A) returns A’s conclusion, and Sub(A) returns all of A’s sub-arguments.

Definition 2.14 ([177]) Let K be a knowledge base in an argumentation system (L ,− ,R).
An argument A is defined as

• A = {φ} if and only if φ ∈ K where Prem(A) = {φ}, Conc(A) = {φ}, and
Sub(A) = {φ}.

• A= {A1, ...,An⇒ψ} if and only if A1, ...,An are arguments and there exists a de-
feasible rule in the argumentation system AS such that Conc(A1), ...,Conc(An)⇒
ψ ∈ R; Prem(A) = Prem(A1)∪ ...∪Prem(An); Conc(A) = ψ; and Sub(A) =

Sub(A1)∪ ...∪Sub(An)∪{A}.

Attacks from one argument to another are represented through the contrariness
function, and successful attacks are defined as defeats. The ASPIC+ framework can
model rebutting, undermining, and undercutting attacks. A rebutting attack is one
where an argument attacks the conclusion of another. An undermining attack is one
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where the conclusion of an argument is contrary to the premise of another. An under-

cutting attack is one where an argument’s defeasible inference from a set of premises to
a conclusion is attacked by another argument. While both rebutting and undercutting
attacks can only feature in structured argumentation that allows for defeasible infer-
ence rules, undercutting attacks are not included in the new work presented in this
thesis. Furthermore, as the ASPIC+ formalism has been restricted to the set of de-
feasible rules without preferences, all conflicts that feature in the sets output by the
contrariness function are deemed to be defeats, as per in Definition 2.15.

Definition 2.15 ([177]) For the arguments A,B ∈K , the argument A defeats B, when:

• A rebuts B (on B′) if and only if Conc(A) ∈ ψ for some B′ ∈ Sub(A) where
B′ = {B′′1 , ...,B′′n ⇒ ψ};

• A undermines B (on ψ) if and only if Conc(A) ∈ ψ for some B′ = ψ , ψ ∈
Prem(B).

As in [177], structured argumentation theories along with the set of defeats can be
employed in the instantiation of Dung abstract argumentation graphs. Remembering
that a Dung-style argument system is a tuple (A ,R) with a set of arguments A and
defeats R ⊆A ×A , as defined in Section 2.3.1.

Definition 2.16 ([177]) A Dung argumentation framework GAT corresponding to an
argumentation theory AT is a pair (A ,R) with a set of arguments A and relations
R instantiated using the respective arguments (Definition 2.14) and defeats (Definition
2.15) within the theory.

Once the ASPIC+ framework has been translated to a Dungian graph, all the well-
known semantics can be used to compute the admissible sets of arguments, using either
extension- or labelling-based approaches. The mapping from an ASPIC+ argumenta-
tion theory to Dung’s argumentation frameworks has been applied to real-world sce-
narios, such as for reasoning in the mathematics [167] and intelligence [215] domains,
to name a couple.

2.3.2.2 The Argument Interchange Format

The Argument Interchange Format (AIF) is a community-led attempt to gather a vari-
ety of types of works within the computational argumentation literature by providing a
shared ontology to facilitate future research and development of argumentation-based
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tools and techniques [52]. The onotology acts as an abstract medium that allows re-
searchers to employ any logical language they so choose in order to create argument
systems, whilst also providing them with the added benefit of going between languages
and formalisms. For instance, if a user were to conduct argument analysis on a de-
bate using an annotation scheme, such as the Inference Anchoring Theory [37], and
save their data in the AIF, then they would also be able to semantically evaluate the
acceptability of arguments in their analysis by mapping it from the AIF to an ASPIC+

argumentation theory and then to a Dung argumentation framework, which can be eval-
uated using all the well-know semantics. As such, the AIF provides a solid foundation
on which real-world applications for argumentation can be based. In Section 2.3.3.1,
I briefly introduce a number of proposals within the literature that employed the AIF
to store structured argument data that was transformed from unstructured natural lan-
guage corpora through argument analysis and annotation.

The specification for the AIF ontology is presented in Figure 2.9. The AIF ontol-
ogy has two parts, namely the Upper Ontology and the Forms Ontology [181, 180].
The Upper Ontology is comprised of information nodes (I-nodes) and scheme nodes

(S-nodes), allowing users to build the nodes and edges found within argument systems.
Depending on the context, information nodes store the data points within an argu-
ment analysis, such as locutions and propositions, whilst scheme nodes capture general
patterns of reasoning, such as the inference between a set of premises supporting a
conclusion or a conflict between I-nodes. As such, scheme nodes are the instantia-
tion of: rule-application nodes (RA-nodes), indicating an inference from at least one
I-node to another; conflict-application nodes (CA-nodes), indicating a conflict between
two I-nodes; or preference-application nodes (PA-nodes), which annotate preferences
between I-nodes.

The Forms Onotology employs the nodes and edges in the Upper Ontology and
allows users to refine the simple patterns of reasoning captured, instantiating differ-
ent theoretical argumentative forms, such as the argumentation schemes discussed in
Section 2.2.1, thus allowing users to attain a better understanding of argumentation
by modelling the intricacies found within it. The refinement of stereotypical patterns
of reasoning into argumentation schemes is important when conducting argumentation
mining, which I discuss more in Section 2.3.3.

The AIF ontology’s main representational language is a directed graph. Graphs
provide a structured and systematic way of describing argumentation without the con-
straints of a logic [52], while also aligning with many of the accounts of argumentation
proposed within the literature. An AIF argument graph GAIF , not to be confused with
the AIF ontology specification presented in Figure 2.9, is defined in Definition 2.17.
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-

Figure 2.9: The AIF specification (taken from [11]).

Definition 2.17 Let GAIF = (V,E) be an AIF argument directed graph which is a pair
(V,E) where

1. V = I ∪RA∪CA is the set of vertices in GAIF , where I are the I-nodes, RA are
the RA-nodes, and CA are the CA-nodes;

2. E ⊆V ×V \ I× I is the set of edges in GAIF ;

3. if and only if v ∈V\I, then v has at least one direct predecessor and successor;

4. if and only if v ∈ RA, then v has at least one predecessor and successor in the
form of a premise and conclusion, respectively;

5. if and only if v∈ PA, then v has exactly one predecessor vi and one direct succes-
sor v j that instantiates the form preferred and dispreferred element, respectively,
where vi ̸= v j; and

6. if and only if v ∈CA, then v has exactly one predecessor and successor, respec-
tively termed conflicting and conflicted elements.
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2.3.2.3 Translating from the AIF to ASPIC+

After introducing a restricted case of the ASPIC+ framework (Section 2.3.2.1), which
can be employed in the instantiation of a Dung argumentation framework (Definition
2.16), presenting the AIF (Section 2.3.2.2), and defining how to instantiate AIF argu-
ment graphs (Definition 2.17), I now present a method capable of mapping argument
data stored in the AIF to an argumentation theory in the ASPIC+ framework, which
enables the semantic evaluation of arguments from real-world analyses [23].

Definition 2.18 For an AIF directed argument graph GAIF = (V,E) with a set of I-
nodes, forms F and a set of relations that link the nodes in G to nodes in F , an
ASPIC+ argumentation theory AT based on GAIF is defined as follows:

1. L = I∪RA;

2. Kp = {v ∈ I | v is an initial node} where v ∈Kp;

3. R is the smallest set of inference rules rk : v1, ...,vn ⇒ v where there exists a
node vi ∈ RA such that:

(a) vi fulfils a defeasible scheme in the Forms Ontology F ; and

(b) vi’s direct predecessors are premises of the form v1, ...,vn and vi’s direct
successor is a conclusion of the form v.

4. vh ∈ v j if and only if ∃vi ∈CA such that vi has a direct predecessor vh and direct
successor v j.

The translation from the AIF to an ASPIC+ argumentation theory to a Dung argu-
mentation framework enables automated reasoning about real-world arguments and the
conflicts between them. The importance of this mapping will become apparent in the
work presented in the introduction to Part II: it was employed to convert the outputs
from an argument analysis of a deception operation during World War Two from the
AIF to a Dung-style argument system that was used to evaluate the techniques proposed
in Chapters 5 and 6.

2.3.3 Argument Mining

In this subsection, I examine the topic of argument(ation) mining, introducing man-
ual and automated approaches in Sections 2.3.3.1 and 2.3.3.2, respectively, and high-
light some of the problems associated with both methods in Section 2.3.3.3. Gener-
ally speaking, argument mining is the act of extracting propositions from unstructured
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natural language corpora and identifying inference links between them, instantiating
arguments that capture the reasoning involved. Both manual and automated argument
mining employ a pipeline to achieve the aforementioned goal, however they differ in
the tools they use to do so which, therefore, impacts things such as the speed and accu-
racy of argument analysis. While I examine the manual approach to argument mining
in more detail within this subsection because it features in the work presented through-
out Part II, I also include some discussion pertaining to automated methods as they are
an obvious avenue for future work from this thesis.

2.3.3.1 Manual Argument Mining

Understanding manual argument mining provides a good starting point from which to
grasp automated approaches. There are a wide variety of manual argument annotation
software available on the internet, such as Araucaria [183], Rationale [85], Carneades

[88] and the Online Visualisation of Argument (OVA+) [108]. Most of these applica-
tions require the annotator to, first, manually extract argumentative propositions and
then identify the inference structure between them, forming arguments which contain
a simple structure of inference between a set of premises leading to a conclusion. Af-
ter the identification of the simple structure and depending on the requirement of how
detailed an analysis should be, an annotator may choose to refine the simple structure,
instantiating argumentation schemes, such as Walton’s set of schemes [235] discussed
in Section 2.2.1, which better capture the inference within arguments. Moreover, the
instantiation of argumentation schemes, with their accompanying set of critical ques-
tions, enables analysts to identify attacks between the propositions within the argu-
ments in their analysis. The general pipeline for manual argument mining is presented
in Figure 2.10.

Text Segmentation

Argument / Non-Argument Classification

Simple Inference and Conflict Structure

Refined Structure

Figure 2.10: Distinct tasks within the manual argument mining process (adapted from
[126]).
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Text Segmentation. Partitioning of unstructured natural language corpora is the first
step within manual argument analysis. The literature on text segmentation is divided
into two categories, namely the identification of elementary discourse units or argu-

mentative discourse units. Elementary discourse units (EDUs) are defined as a set of
non-overlapping text segments extracted from natural language. There a number of
different definitions for an EDU such that they can be either be individual sentences
[174], clauses [89, 86], or prosodic units [102], to name a few. The main thing to note
here is that the identification and extraction of EDUs should remain consistent through-
out analysis so, for example, if an annotator chooses to split text using sentences, then
sentence extraction should be the method of segmentation throughout their study.

Moving onto argumentative discourse units (ADUs), first introduced by Peldszus
and Stede in [168] where they define them as the minimal atoms of arguments, or more
commonly known as propositions. In some cases, ADUs might be much longer than
EDUs as this approach to segmentation splits text up into parts which contribute to
argumentation. Segmentation into ADUs is more challenging when compared to its
EDU counterpart. One analyst might believe that a certain excerpt of a text contains
argumentative power while another might not. In addition to this, the complexities of
language makes dissecting corpora into its set of ADUs difficult. In [193], Saint-Dizier
discusses the topic of dislocation in text as it pertains to ADU extraction. A dislocation

in a sentence is a syntactic change where one ADU is embedded within another such
that there is propositional content to either side (i.e., to the left and right) of another
proposition’s boundaries. A further challenge when segmenting using ADUs comes
from the use of enthymemes within natural language. An enthymeme is an implied
premise of an argument [103]. One of the main reasons for enthymemes within corpora
is because we, as humans, want to be as efficient as possible when communicating. So,
human agents often leave things unsaid because they are seemingly obvious. However,
this presents problems for the argument analyst whose job it is to make reasoning
explicit. The two aforementioned challenges make text segmentation an extremely
challenging task for both human and computational agents.

Argument / Non-Argument Classification. In short, this part of the manual process
involves deciding which of the excerpts form the propositions of arguments within a
given text. Often, in the case of manual argument mining, the decision as to whether
an EDU or ADU is argumentative or not occurs during the segmentation phase, but
automated approaches must conduct this classification task separately [126].
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Simple Inference and Conflict Structure. Once an argument analyst has segmented
the text and classified which segments are argumentative, they begin the task of study-
ing the set of segments and identifying the inference and attacks between them, in-
stantiating a simple structure. Analysts should pay close attention to the pattern of
inference employed because the structure of the inference might not be as simple as a
single premise supporting a conclusion.

In [90], Groarke et al. note the variety of ways within which inference can present
itself in the simple structure, as displayed in Figure 2.11. Convergent arguments, as
shown in Figure 2.11a, contain more than one independent premise which supports a
conclusion, such that the removal of one premise does not weaken the inference of an-
other premise supporting the same conclusion. Divergent arguments contain the same
premise supporting multiple conclusions, as presented in Figure 2.11b, however these
arguments are not so common in real-world argumentation. Linked arguments contain
multiple premises that are connected and support a single conclusion, as per Figure
2.11c, such that each premise requires the others for the inference to the conclusion to
hold. If one of the premises was to be attacked or omitted from a person’s argumen-
tation, then the argument would be significantly weakened. Sequential arguments, as
displayed in Figure 2.11d, contain a series of premises leading to a conclusion where,
for example, the first premise supports the second, the second premise supports the
third, and so on, until the final premise leads to a conclusion. It is important to note
that sequential arguments could be seen as a series of arguments that sequentially sup-
port each other such that the conclusion of one argument is the premise of the next.
In reality, argumentation is not as simple as the types of arguments discussed above
because we assert a constellation of propositions to make our position acceptable to

a rational judge who judges reasonably, as per Eemeren et al.’s definition of argu-
mentation [76] that was quoted in Section 2.2. Real-world argumentation contains
combinations of the aforementioned simple structures which makes manual argument
analysis a challenging and time-consuming task, even for expert argument annotators.

A notion of attack should be considered during the instantiation of the simple struc-
ture to better understand which propositions are in conflict with others. Although I have
touched upon the different types of attack when talking about Toulmin’s model of argu-
ment in Section 2.2, Dung’s abstract argumentation frameworks in Section 2.3.1, and
the ASPIC+ framework in Section 2.3.2, it is important to note that the simple structure
can provide a graphical representation of conflict. The applications mentioned earlier
in this section – i.e., Araucaria, Rationale, Carneades and OVA+ – make it easier for
analysts to diagrammatically describe rebutting, undercutting, and undermining attacks
at the propositional level.
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Figure 2.11: The simple structure of inference for (a) convergent, (b) divergent, (c)
linked and (d) sequential arguments, where pi and c j refers to the i-th and j-th premise
and conclusion, respectively (adapted from [126]).

Refined Structure. After the instantiation of a simple structure, the analyst is able
to identify stereotypical patterns of inference, thus, adapting the simple structure into
a refined one through use of argument annotation schemata, such as Walton’s set of
argumentation schemes, as discussed in Section 2.2.1. The critical questions within
these schemes provide analysts with the most commonly used set of attacks between
propositions. The critical questions enable the argument analyst to identify attacks
which they might not have considered otherwise, during the instantiation of the simple
structure phase. Furthermore, argumentation schemes aim to make reasoning explicit
and, therefore, enthymemes, where a proposition is either not said or left implied, must
be identified and incorporated into refined arguments within this stage of analysis. The
combination of modelling arguments from the simple structure using argumentation
schemes, plus their critical questions to identify conflicts between propositions, and ex-
plicitly incorporating enthymemes, makes instantiating the refined structure the most
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cognitively challenging and time-consuming task within manual argument analysis.
Although the refinement of the inference is hard, it enables analysts to fully understand
the argumentation within their problem setting. Again, the argument annotation soft-
ware – i.e., Araucaria, Rationale, Carneades and OVA+ – introduced earlier in this
section provides analysts with the necessary tools to instantiate the refined structure.

Software for Manual Argumentation Mining. As mentioned earlier in this sub-
section, there have been many proposals within the literature to provide software which
aids in the visualisation and analysis of arguments, such as Araucaria, Rationale,
Carneades, and OVA+. Looking to Janier et al.’s OVA+ as an example, the software is
a web application that enables users to annotate unstructured natural language corpora,
converting it into diagrammatic representations of arguments which allows for further
analysis. The software has been used in a number of research tasks – such as in the
analysis of BBC Radio Four’s Moral Maze [127], the 2016 United States presidential
debates [234], and more recently, BBC One’s Question Time [99], the simulation of
mathematical reasoning [167], and intelligence analysis [253] – showing how the in-
ference between propositions can be formally represented as either simple inference
rules or through the instantiation of argumentation schemes. The application also en-
ables the representation of attack between propositions.

While OVA+ is a useful tool for instantiation and visualisation of inference struc-
tures, it does not provide users with automated reasoning about the acceptability of
arguments and conflicts between them. The Online Argument Structures Tool [203],
commonly known as TOAST, is one such implementation that utilises the AIF, ASPIC+

framework, and the mapping from AIF to an ASPIC+ argumentation theory to a Dung
argumentation framework, as discussed in Section 2.3.2, in order to provide users with
the ability to evaluate the acceptability of real-world arguments.

2.3.3.2 Automated Argument Mining

The aim of automated argument mining is to employ techniques from the natural lan-
guage processing and computational linguistic literature to extract structured argu-
ments from unstructured natural language corpora. The realisation of reliable and ac-
curate automated approaches should enable the instantiation of abstract argumentation
frameworks, which can then be evaluated using many of the well-known semantics;
thus, enabling automated reasoning of real-world problems at speed and scale. Gener-
ally, the tasks involved in the automation of the argument mining process can be split
into two stages, namely argumentative component detection and relation prediction.
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Looking first to argumentative component detection. This task is usually split into
two distinct sub-tasks which are the classification of propositions with argumentative
power and detection of their textual boundaries. As with the manual approach, much
of the literature pertaining to automated methods for argument mining obtains ADUs
through text segmentation. While there are some studies which assume that the tex-
tual boundaries of propositions have been detected through other means – such as in
[207, 73] – so that they can solely focus on classifying claims and premises, many of
the other works within the literature do not make this assumption. The remainder of
the literature employs a series of grammatical and syntactic features (i.e., punctuation,
verb tenses, part-of-speech tags, n-grams, and discourse markers) to train machine and
deep learning models to extract ADUs. The machine learning models which have been
trained include: Support Vector Machines [149, 166, 207, 73, 72]; Logistic Regression
[132, 185, 154]; Naı̈ve Bayes classifiers [151, 149, 27, 73]; Maximum Entropy classi-
fiers [151, 149]; Parsing algorithms, which use a context-free grammar [84, 169, 77];
and Decision Trees and Random Forests [80, 73]. In [94], Habernal and Gurevych for-
mulated the argumentative component detection task as an entity recognition problem,
where each word in a corpus is tagged as either the beginning, inside or outside of an
ADU. Since then, approaches have adopted the aforementioned tagging formulation
and proposed various deep learning models, such as use of recurrent neural networks
[112, 5, 143] and transformer architectures [145, 5, 143], for ADU extraction.

Relation prediction is the second and most challenging stage within the automated
argument mining process. This stage is focused on the prediction, rather than the de-

tection or classification, of both support and conflict relations between propositions to
form either arguments or attacks between them, respectively. The prediction of sup-
ports and attacks is all that one needs to instantiate an argumentation framework and
can be thought of as somewhat similar to the instantiation of the simple structure when
conducting manual analysis. A number of machine and deep learning models have
been proposed to predict relations, such as, again, Support Vector Machines [207, 155,
144], Parsing algorithms [84, 169, 77], Logistic Regression [154], Textual Entailment
[40, 113], Recurrent Neural Networks [155, 77, 143], and Transformer architectures
[192, 143].

Fully automated pipelines. While the difficulty significantly increases with each
stage of the automated argument mining pipeline, this has not stopped some from
proposing fully automated end-to-end approaches, taking unstructured natural lan-
guage corpora and extracting the structure of inference and conflicts between proposi-
tions [77, 130, 83, 45]. To achieve the aforementioned pipelines, all these approaches
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assume that a relation (i.e., an inference or conflict) occurs between a single source and
target only. Although this is a good first step, the proposals were not capable of mod-
elling the reasoning about arguments that contain more than one premise supporting a
conclusion. Thus, as a result of this constraint, the proposed models do not predict and
instantiate Walton’s argumentation schemes, which is arguably the most challenging
task but also offers the most potential benefit in terms of understanding argumentation
at scale.

Walton’s argumentation schemes in automated approaches. The automated rela-
tion prediction stage can also include the prediction of Walton’s argumentation schemes,
which is similar to the instantiation of the refined structure in manual analysis and al-
lows for more detailed representation of inference between propositions. In [78], Feng
and Hirst propose one of the first approaches that predicts Walton’s schemes, where
they trained and tested on Reed and Rowe’s Araucaria database [183] and achieved
accuracies of 63–91% and 80–94% in one-against-others classification and pairwise
classification, respectively. Since then, there have not been many attempts to automat-
ically predict Walton’s schemes which can be attributed to the difficulty of the task.
However, there have been a few proposals within the literature that have attempted to
mine, for example, bespoke schemes to capture reasoning involved in consumer prod-
uct reviews [247] (omitting evaluation results using recall and precision due to lack of
standardised testing datasets for argument mining) and a number of Walton’s original
schemes, using: a combination of Support Vector Machines, Naı̈ve Bayes classifiers,
and Decision Trees in [125] (with F-scores between 0.78 and 0.91); Tree Kernels in
[134] (with F-scores between 0.65 and 0.92); Bayesian Networks in [123] (where the
overall average accuracies for the test set were 27.5%); and a combination of Trans-
former architectures, Textual Entailment, and probabilistic soft logic in [113] (with
F-scores between 0.42 and 0.79 across two distinct training and test datasets).

2.3.3.3 Challenges and Limitations

Both manual and automated approaches to argument mining have advantages and dis-
advantages. The advantage of manual analysis is that it is thorough, it enables an
annotator to grasp the reasoning within data, and once the simple structure has been
instantiated, analysts can refine it, instantiating Walton’s argumentation schemes. The
disadvantage of a manual approach is that it is cognitively demanding, requires a lot
of training before an annotator is proficient, and manual analyses can take a consider-
able amount of time. The main benefit of automated approaches is that the process of
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mining arguments is much quicker. However, this speed comes at a cost. The accu-
racy of automated methods for argument mining can be quite low because of a cascade
of errors resulting from the combination of errors from each model, for each stage of
the pipeline. Thus, the technology, in its current state, employed to conduct automated
argument mining does not outperform manual annotation. Moreover, many of the auto-
mated pipelines are trained on a specific domain and perform poorly when those same
models are used in different scenarios. On the contrary and once proficient, a manual
annotator can go between domains at ease.

Argument data. The lack of consistently annotated argument data poses a real prob-
lem for the development of automated approaches to argument mining. There are five
reasons for this. The first is due to the amount of time it takes analysts to conduct
manual argument mining, which means there are not many openly-available datasets
for the development of automated techniques. Creating structured argument data from
unstructured text is a complex and time-consuming task that requires teams of annota-
tors, where there might not be a high inter-annotator agreement due to the subjectivity
and complexity of analysis, even between the most skilled annotators. Second, dif-
ferent researchers have employed a variety of annotation schemes and methodologies
in previous works which means that if, for example, we were to provide two research
groups with the same set of corpora, then the resulting sets of instantiated arguments
and attacks may well be very different. Third, in years gone by, different research
groups have stored their argument data in different formats. While this is not neces-
sarily a problem, it makes implementing and comparing automated approaches more
difficult than it needs to be. Argument data saved in the AIF (Section 2.3.2.2) and
stored on shared databases, such as AIFdb [128], aims to solve this particular problem
as it provides a common platform for researchers to develop models using a consis-
tent datatype. Fourth, there is simply not enough annotated argument data to train, for
example, an encoder-decoder recurrent neural network or a transformer to produce a
context-independent pipeline of models. Finally, the nuance of argumentation makes
it such that many of the machine and deep learning models are trained on data from
specific domains – such as within legal, scientific, and political settings, to name a few
– where they perform poorly when they are employed within settings that they were
not constructed for.

Enthymemes and Walton’s argumentation schemes. Enthymemes pose another
challenge when trying to automate the argument mining process, specifically when
trying to predict Walton’s argumentation schemes. Often in natural language, proposi-
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tions are left implied. While this is not an issue for the manual annotator, this makes
predicting argumentation schemes a real challenge for automated techniques. Cur-
rently in the literature, the automated approaches make the assumption that a single
premise supports a single conclusion. However, many argumentation schemes contain
more than one premise. Given the fact that some of these premises will be left unsaid
within corpora, training machine and deep learning models to reliably predict Walton’s
schemes, whilst also trying to identify enthymemes, is a difficult research question that
is currently unanswered.

For a comprehensive overview of the process, challenges, and limitations involved
in automated argument mining, refer to [135] and [126].

2.4 Tools for Intelligence Analysis

In this section, I examine the current literature on proposed techniques and tools for
the analysis phase of the Intelligence Cycle, with a particular focus on evaluative tech-
niques, such as the ACH. I begin by discussing general approaches, then examine a
number of Bayesian methods, and finally consider tools that employ argumentation for
this task.

2.4.1 General Approaches

Software tools have been developed to support the workflows of intelligence analysts.
A lot of the applications pertinent to this thesis have extended the methodology of the
ACH (Section 2.1.5) so that it functions on a computer, making it accessible to analysts
and more efficient than analysis conducted by hand [26, 164]. In [26], Billman et al.
show how software applications can provide the intelligence community with the added
benefit of monitoring the judgements, performance, and bias of analysts. Tools which
provide an audit trail of the reasoning within an analysis are important for instances
where a mistake has occurred. Such tools would have been useful in the assessment of
the failings of the intelligence services before the terrorist attacks on 11th September
2001 and before the invasion of Iraq in 2003 on a faulty premise.

While some tools have mapped the ACH process to an application, other works
have taken the methodology of the ACH and incorporated more rigorous reasoning
techniques. For example, in [175], Pope and Jøsang propose the use of subjective logic
within the ACH, which is the first example within the literature to combine a logic
with the procedure. The proposed approach enhances the ACH by allowing analysts
to apply abductive and deductive reasoning within their analysis, while also minimis-
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ing reasoning errors. Another proposal [60] combines granular computing with the
ACH, amalgamating similar items of information into chunks, referred to as granules,
which are then grouped into rough sets, where inference is conducted using three-way
decisions; thus, aiding analysts when reasoning with items of similar information in-
stantiated in the diagnosticity matrix of the ACH.

With the advent and popularity of large language models, such as OpenAI’s Chat-
GPT5, it is obvious that some researchers might think that those models are capable of
performing some of the analytical tasks that analysts do on a daily basis. For instance,
Snidaro states that

“Large language models have the potential to revolutionise intelligence

operations by providing intelligence officers with powerful tools for infor-

mation processing and analysis.” [204, p. 449]

More pertinent to this thesis, whether these models alone are capable of, first, gen-
erating the set of plausible, MECE hypotheses (Chapter 1) and second, reasoning with
a set of incomplete, conflicting, and uncertain information, is a research question that
is currently unanswered. Large language models are good at generating text on previ-
ously seen examples, which they have been trained on. However, intelligence analysis
often includes information for which there is no training data. Therefore, such models
might not perform so well when tasked to generate and evaluate hypotheses on these
types of novel situations. I discuss this point in more detail in Chapter 4, where I test
whether large language models are capable of generating the set of MECE hypotheses
for a recent, real-world intelligence scenario.

2.4.2 Bayesian Methods

Bayes’ theorem [18] is a mathematical formula, first introduced by the British mathe-
matician and Reverend Thomas Bayes in 1764, that provides a method of refining an
initial probability judgement given some information. The formula enables the com-
putation of a posterior probability which describes the probability of an event using an
initial belief, referred to as a prior, and the likelihood of the observation of a given set
of data in light of that event being true.

Bayes’ law has been shown to be capable of revising probability estimates per-
taining to hypotheses within intelligence settings, specifically in problems of strategic
warning [251, 74]. In [252], Zlotnick examples how Bayes’ theorem could have com-
plemented analysis on events leading to the 1941 Pearl Harbour attacks and the invasion

5https://chatgpt.com/auth/login (Accessed on: 12.07.2024)

https://chatgpt.com/auth/login
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of South Korea in 1950. In [79], Fisk provides another pertinent and early comparison
of the use of Bayes’ formula with other conventional methods for intelligence analysis
at the time, using a border dispute between China and the Union of Soviet Socialist Re-
publics (USSR), as an example. In both works, Zlotnick and Fisk show how the refined
probabilities, computed using a Bayesian approach, are better estimates of the likeli-
hood of hypotheses. A rendition of Bayes’ law, as it pertains to the aforementioned
intelligence examples, is presented below

P(h1|I) =
P(h1)P(I|h1)

P(I)
(2.6)

where P(h1|I) is the posterior probability of a hypothesis h1 given the available in-
formation I, P(h1) is an intelligence analyst’s prior belief about the probability of a
hypothesis, P(I|h1) is the likelihood which is the probability of the information given
the hypothesis is true, and P(I) is the probability of the information.

Depending on the number of hypotheses in the assessment, the probability of the
information can be computed in different ways. The probability of the information
when there are two hypotheses, h1 and h2, within an analysis is

P(I) = P(I|h1)P(h1)+P(I|h2)P(h2). (2.7)

When there is more than two hypotheses within an analysis, the probability of the
information for N hypotheses can be found through Equation 2.8.

P(I) =
N

∑
i=1

P(I|hi)P(hi) (2.8)

According to Zlotnick [251], Bayesian methods should not become an alternative
to intelligence analysis, they should act as a reliability check for use after analysis, after
making an initial set of probabilistic judgements, helping analysts understand whether
their set of conclusions are plausible. Although Zlotnick argued this in 1967, his ar-
gument stood the test of time, with a recent study showing that the post-analytic use
of Bayes’ theorem yielded large improvements in analysts’ accuracy, when compared
with the vanilla ACH [117].

A number of other Bayesian techniques have been shown to be capable of hypothe-
sis evaluation within the intelligence domain. One such technique is the Bayesian net-
work [111], which is an extension of Bayes’ theorem. These networks employ directed
acyclic graphs to model the probabilities of hypotheses and evidence (as the nodes in
the graph) and their likelihoods (as the edges). There have been some proposals within
the literature that show how the use of Bayesian networks could aid an intelligence
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analysis, specifically analysis conducted using the ACH [231, 118, 195, 196]. Fur-
ther statistical models have been proposed, such as a multinomial-Dirichlet model for
multiple hypothesis evaluation [68]. All these networks, however, require the user to
input the network’s structure and probabilities, which could make this task a tedious
one if there is a lot of data. As the intelligence community moves towards reasoning
with more information, through the incorporation of additional data collected through
OSINT (Section 2.1.2), instantiating a graph and assigning probabilities manually will
not be practical.

In [39], Burns advocates against employing more sophisticated statistical tech-
niques that require probabilistic experts because intelligence analysts are often not
trained in formal statistical and probability theory, and they usually reason with only a
few hypotheses and items of information. So, many of the proposed techniques, such
as the aforementioned Bayesian networks and multinomial-Dirichlet model, are for-
eign to the analyst such that their use adds unneeded complexity to an already complex
task. Burns suggests a simpler approach in [38], where one elicits the set of MECE hy-
potheses, the information (which is referred to as evidence by Burns), the likelihood of
observing the information given the hypotheses, and the prior probabilities of hypothe-
ses, from intelligence analysts, which ultimately enables the computation of posteriors,
through Bayes’ theorem. The approach taken by Burns reaffirms the soundness of the
earlier proposals undertaken by Fisk and Zlotnick and, again, suggests that Bayesian
approaches should only be employed after analysis has concluded in order to enable an
analyst to assess the soundness of their initial probabilistic judgements.

2.4.3 Argumentation-based Proposals

The use of argumentation for intelligence analysis is a relatively niche and new research
field, with only a handful of ideas, tools, and techniques for hypothesis evaluation
proposed within the literature. However, the specific task of hypothesis generation has
not been studied from an argumentation perspective in any published research.

Computational argumentation is a seemingly good fit for tools within the analysis

stage of the Intelligence Cycle (Section 2.1.1) for several reasons. First, the use of argu-
mentation schemes, as discussed in Section 2.2.1, should enable intelligence analysts
to make the reasoning underpinning their analysis explicit, which is beneficial when the
reasoning within an analysis is often left implied (Section 2.1.5). Second, the critical
questions in schemes should enable analysts to repeatably identify conflicts between
propositions, where they might recognise attacks between data which they otherwise
might not have. Third, reasoning about the acceptability of arguments containing hy-
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potheses, information, evidence, and assumptions can be done in a logical manner
because of the well-known argumentation semantics (Section 2.3.1). Finally, computa-
tional argumentation enables defeasible and non-monotonic reasoning such that as new
information comes to light, additional propositions can be incorporated into analyses,
thus instantiating new arguments and attacks, which can be reasoned with to come to
an updated set of conclusions.

In [210], Tecuci et al. propose a Wigmorean probabilistic inference network6 that
draws upon Toulmin’s representation of argument, as discussed in Section 2.2, to rea-
son about hypotheses and information within the ACH. While the authors were one
of the first to identify the relationship between the ACH and argumentation, the use
of Toulmin’s account, with the constraint that conflict can only occur as a rebuttal,
means that the proposed model does not allow for the variety of attacks which might
be present within an intelligence analysis.

Walton’s argumentation schemes, as discussed in Section 2.2.1, have been em-
ployed for hypothesis evaluation. In [152], Murukannaiah et al. combine the ACH
with argumentation schemata and conduct a small study, which included 5 undergrad-
uate and 15 graduate students, to compare their proposal with the vanilla ACH, as
defined in Section 2.1.5. They show that the incorporation of argumentation schemes
into the ACH increased: the completeness of analysis due to increased coverage of
belief search; the length of belief chaining; the explicitness of assumptions; and the re-
peatability of the conclusions drawn from analysis, for all participants within the study.
They also argue that the inclusion of argumentation schemes in the ACH increased the
ease of use of the technique. However, the subjects within the test had no former expe-
rience of analytical techniques within an intelligence domain, so the argument for ease
of use as it pertains to trained intelligence analysts needs to be explored. Moreover,
whether all the benefits mentioned translate to skilled analysts still needs to be tested,
but this initial study shows the positive impact that argumentation, specifically the use
of argumentation schemes, could have on techniques for hypothesis evaluation.

The link between the ACH and argumentation schemes has also been explored
through two very different examples on the Defence Science and Technology Labo-
ratory’s eleatics website [63]. The first example utilised data pertaining to Operation

6Wigmore [244] charts provide a method of diagrammatically representing arguments to reason with ev-
idence in the legal domain. The diagrams model support between statements (or evidence) within a legal
case. Wigmore proposed more than thirty different types of support that all have their individual diagram-
matic representations. Each support is assigned a force, which denotes how strong a support is and ranges
from having no effect to either a very strong positive or negative one.
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Fortitude-South7, which was an Allied deception effort during World War Two to make
the Axis command believe that the Allies would invade through the shortest and most
obvious path, from Dover to Pas de Calais, when in fact the Allies went via a longer
route, from Portsmouth to Normandy. The second example studies the 1989 Jesuits
Massacre8 in El Salvador, where the truth about who committed the atrocity only came
to light years later. Here, in both examples, the ACH and argumentation schemes were
combined to show, firstly, how argumentation schemes could be used with the ACH and
second, to demonstrate how both techniques can model the changes in the evaluation of
hypotheses over time as new information comes to light. Furthermore, the Operation
Fortitude-South scenario is of particular importance to this thesis as the example pro-
vided by the Defence Science and Technology Laboratory was manually annotated for
arguments and conflicts, as described in the introduction to Part II, and subsequently
employed to test the methods proposed in Chapters 5 and 6.

There exists a mapping from data stored within the AIF to the populated diagnos-
ticity matrix found with the ACH. In [253], Zografistou et al. conduct an argument
analysis on an intelligence scenario, selecting the arguments which contain hypothe-
ses, and then translate the analysis stored within the AIF to a diagnosticity matrix, with
a view to making argument analysis look more familiar to intelligence analysts. The
relationship between argumentation frameworks and the diagnosticity matrix has not
been formally defined within the literature. However, as I show in more detail in the in-
troduction to Part II and Appendix B, data within a diagnosticity matrix can be mapped
to the AIF, and then to abstract argumentation frameworks. Therefore, the mapping
from the AIF to the ACH, and vice versa, is potentially a form of morphism, which
should be investigated further to understand whether it is indeed a morphism, its type,
and the necessary constraints within which this mapping can occur.

In [189], Robinson employed a utility function to consider the value of adding
arguments and attacks into probabilistic argumentation frameworks [133] to aid in the
generation of RFIs during the collection stage of the Intelligence Cycle (Section 2.1.1).
This approach was then extended in [190] to a simple, real-world example to show that
approach can provide benefit to analysts.

The last piece of notable work discussed in this section was proposed by Toniolo
et al. in [215], where they produced probably the most comprehensive implementa-
tion and evaluation of an argumentation-based tool for collaborative intelligence anal-
ysis. The software presented enables a number of analysts to: communicate amongst

7https://dstl.github.io/eleatics/argumentation/fortitude/ (Accessed on: 10.02.2023)
8https://dstl.github.io/eleatics/argumentation/muc3/jesuits (Accessed on:

10.02.2023)

https://dstl.github.io/eleatics/argumentation/fortitude/
https://dstl.github.io/eleatics/argumentation/muc3/jesuits
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themselves; forage for information; instantiate arguments using Walton’s argumenta-
tion schemes (Section 2.2.1); identify conflicts between items of information through
the instantiation of said schemes; evaluate the resulting argumentation framework, us-
ing the well-known argumentation semantics (Section 2.3.1) and conduct defeasible
reasoning after the incorporation of new arguments and attacks as more information
becomes available; and finally, analysts can ask questions which are answered, using
a technique called crowdsourcing. The authors used intelligence analysts, the subject
matter experts for this domain, to evaluate the performance of their tool, who deemed
the tool to be generally useful in improving their daily activities, as well as having the
potential to benefit complex analysis and training novice analysts.

2.5 Summary and Conclusions

In this chapter, I have presented a survey of the literature related to the work I present
in the upcoming chapters. The main focus of this research is the development of tech-
niques and tools which provide benefit to intelligence analysts, specifically ASAs. In
Section 2.1, I discussed the Intelligence Cycle, the types of intelligence and analysts,
how analysts communicate probability and uncertainty, and a number of analytical
techniques employed during hypothesis generation and evaluation. In Section 2.2, I
introduced argumentation theory as a method for the representation of arguments, fo-
cusing mainly on Walton’s argument from cause to effect [236]. Section 2.3 presents
computational approaches to modelling defeasible reasoning about conflicting argu-
ments, as well as some discussion about both manual and automated argument min-
ing. Finally, in Section 2.4, a number of general, Bayesian, and argumentation-based
proposals for decision- and reasoning-support tools for intelligence analysts were dis-
cussed.

The literature presented in this chapter provides a number of important points that
will be extended by the work presented in the rest of this thesis, which I summarise
below.

Intelligence Analysis. The aim of this thesis is to provide decision-support tools
and algorithms for intelligence analysts. As such, it is important to understand the
Intelligence Cycle, the types of intelligence and analysts, the definition of a hypothe-
sis (Chapter 1), how uncertainty is communicated within intelligence reports, and the
analytical techniques employed in the generation and evaluation of hypotheses. It is
crucial for intelligence analysts to generate the set of MECE hypotheses to ensure that
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they are evaluating all the potential and plausible hypotheses within a given opera-
tional environment. In Chapter 4, I evaluate the feasibility of using large language
models for MECE hypotheses generation. Finally, intelligence analysis is inherently
argumentative and defeasible, in that analysts are tasked with reasoning with conflict-
ing information, where they are required to revise their judgements as new information
becomes available. One such tool that aids the intelligence analyst in their evaluation of
such scenarios is the ACH. An example intelligence analysis using the ACH has been
mapped to an argumentation framework in the introduction to Part II and Appendix
B in order to enable the assessment of the decision-support techniques proposed in
Chapters 5 and 6.

Argumentation Theory. Argumentation theory plays a pivotal role in the represen-
tation of arguments and attacks between propositions within those arguments. Wal-
ton’s argumentation schemes [235] provide a method that is capable of modelling the
stereotypical patterns of reasoning involved in intelligence analyses. In addition to this,
the set of critical questions identified by Walton should enable analysts to repeatably
identify attacks between hypotheses, information, evidence, and assumptions. These
schemes will be examined in more detail in the introduction to Part II when I show how
the diagnosticity matrix within the ACH can be mapped to an argumentation framework
containing instantiated argumentation schemes. One of Walton’s schemata, the argu-
ment from cause to effect [236], can represent the reasoning underpinning arguments
which contain a hypothesis. In Chapter 3, the argument from cause to effect and its
set of critical questions is examined in more detail, and then extended to incorporate
propositions that contain items of information, evidence, assumptions, and hypotheses,
as well as qualitative probability and uncertainty ranges

Computational Argumentation. Techniques from the fecund field of computational
models of argument provide a number of mechanisms which are useful when applying
argumentation theory to real applications. There have been a number of fundamental
contributions from this research area. First, Dung’s seminal work on abstract argu-
mentation frameworks and Prakken’s ASPIC+ framework which, when combined, en-
ables the evaluation of the acceptance status of structured arguments. In Chapter 5, the
ASPIC+ framework’s definition of arguments is extended to produce a definition of a
hypothesis and a definition of information to aid in the refinement of prior probabilities
of hypotheses. The proposed, structured argumentation-based definition of a hypothe-
sis in Chapter 5 is in accordance with Pherson and Heuer Jr.’s definition of a hypothesis
in Chapter 1. In Chapter 6, Dung’s framework is combined with probability and infor-
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mation theory in order to employ abstract argumentation for sensitivity analysis within
the ACH, discussed in Section 2.1.5.2. Second, the AIF enables researchers to store ar-
gument data in a consistent data type, which can then be mapped to Dung’s framework
for semantic evaluation. Finally, the formalised approaches to manual and automated
argument mining facilitate the transformation of unstructured natural language corpora
into structured argument data. All three aforementioned contributions have enabled the
assessment of the argumentation-based decision-support tools and techniques proposed
in Chapters 5 and 6.

Tools for Intelligence Analysis. There have been proposals within the literature
which employ general, Bayesian, and argumentation-based approaches in the devel-
opment of tools to provide decision- and analytical-support for intelligence analysts.
In Chapter 4, experiments were conducted to assess the feasibility of leveraging large
language models for MECE hypothesis generation. Chapter 5 demonstrates how both
argumentation and Bayes’ theorem can be employed in a formal account to refine an
analyst’s initial prior beliefs using a semantically-evaluated set of arguments contain-
ing information. All three of the techniques proposed in Chapters 4, 5, and 6 should be
utilised as support tools only, acting as a reliability check for analysts after conducting
their own analyses, in line with Zlotnick’s suggestion in [251] (Section 2.4.2).



Part I

Hypothesis Representation &
Generation
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In this part, I introduce two techniques that study hypothesis representation and
generation. In Chapter 3, I consider hypothesis representation and examine Walton’s
argument from cause to effect [236], demonstrating how the scheme can be extended
to increase its specificity so that it is fit for operational use within intelligence settings.
Similar to the notion put forth by Toniolo et al. in [216] and discussed in Section
2.2.1.1, the scheme includes of items of information, evidence, and assumptions – as
premises – that support a hypothesis – the conclusion of the argument. All proposi-
tions have an associated qualitative description of their probability and uncertainty, in
accordance with the Probability (or Uncertainty) Yardstick [221] (Section 2.1.4). The
hypotheses incorporated within the proposed scheme are statements that follow Pher-
son and Heuer Jr.’s definition of a good hypothesis [173], as previously discussed in
Chapter 1. Then, in Chapter 4, I present a feasibility study which assessed whether
large language models can be employed for MECE hypothesis generation. Large lan-
guage models were an obvious choice of technology due to their ability to conduct con-
ditional text generation. However, as the results presented in Chapter 4 show, whether
those models are able to generate good hypotheses for novel, intelligence scenarios is
questionable. In conformity with Zlotnick’s recommendation in [251] (Section 2.4.2),
the techniques proposed in this part, and the next, are to be employed after an ASA has
completed their own analysis and should provide the analyst with the assurance that
their judgements are reasonable and logical, in light of the available data. Moreover,
the argumentation scheme proposed in Chapter 3 should increase the explainability of
analyses by fully capturing analysts’ reasoning about data and assumptions that support
hypotheses.



Chapter 3

A Scheme for the
Representation of Hypotheses

In this chapter, I present an argumentation scheme to capture the reasoning about hy-
potheses supported by information, evidence, and assumptions. The argumentation
scheme is an extension of Walton’s argument from cause to effect [236], which was
introduced in Chapter 2. Not only does the extended scheme enable analysts to model
support for a hypothesis using multiple premises, it allows the analyst to describe the
probabilities and uncertainties associated with each proposition instantiated within the
scheme.

3.1 Extension of the Argument from Cause to Effect

In Chapter 1, I introduced Pherson and Heuer Jr.’s definition of a hypothesis within
intelligence settings. A hypothesis within this context is a falsifiable statement that
explains available data in an accurate fashion [173]. In Section 2.2.1.1, I also discussed
a more recent, argumentation-based definition of a hypothesis proposed by Toniolo et

al. in [216], which employs Walton’s argument from cause to effect [236] and agrees
with Pherson and Heuer Jr.’s definition, arguing that a hypothesis is comprised of a
series of information about activities and events which describe how a situation has
developed. Here, I return to the argument from cause to effect and discuss some of the
issues associated with it, making it unfit for operational use within intelligence settings,
in its current state. I then take these concerns and propose a series of extensions which
render the scheme capable of representing hypotheses that are supported by multiple
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items of information, evidence, and assumptions. The proposed scheme also enables
the inclusion of uncertainty and probability for past, present, and future situations to
fully represent an analyst’s reasoning.

Recall Walton’s argument from cause to effect [236] with its accompanying set of
critical questions from Chapter 2:

Major Premise: Generally, if A occurs, then B will (might) occur.

Minor Premise: In this case, A occurs (might occur).

Conclusion: Therefore, in this case, B will (might) occur.

Walton identifies three critical questions for this scheme:

WCQ1: How strong is the causal generalisation?

WCQ2: Is the evidence cited (if there is any) strong enough to warrant
the causal generalisation?

WCQ3: Are there any other causal factors that could interfere with the
production of the effect in the given case?

Consider the following example from a fictitious scenario based upon the Intelli-

gence Cycle, as discussed in Section 2.1.1. Relations are deteriorating between two
bordering countries, Country X and Country Y. After some discussion and planning,
stakeholders from Country X want to understand whether Country Y is preparing to
invade, so they initiate a RFI which tasks an ASA with analysis of the situation. Un-
fortunately, the ASA does not possess any information on the evolving scenario, but
they hold an assumption about the leader of Country Y, namely that they are a dictator
with a thirst for power and resources. To understand more about the situation, the ASA
tasks a SSA, through the initiation of another RFI, to employ IMINT, one of the five
disciplines of intelligence collection [139], to collect data from the operational envi-
ronment pertaining to Country Y’s movements of personnel and military equipment
close to Country X’s border.

Suppose that during their collection using satellite imagery, the SSA captured a
photograph which likely contained a large and unknown number of people close to the
border of Country X and in response to the RFI raised by the ASA, the SSA sends
a report asserting that observation, its likelihood, and the confidence in that estimate.
While the SSA has employed their expertise to analyse the image, what is shown in the
picture is not fully conclusive, which is why the SSA’s observation was accompanied by
the qualitative probability range associated with the descriptor likely. Now, as per the
Intelligence Cycle, the ASA generates a set of MECE hypotheses using the received,
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raw intelligence and evaluates the likelihood of those hypotheses using a technique,
such as the ACH, in line with the analysis phase of the Cycle. The ASA may want to
represent their reasoning about those hypotheses using an argumentation scheme. Us-
ing the raw intelligence provided by the SSA, the ASA instantiates Walton’s argument
from cause to effect [236], which might look something like the following:

Major Premise: Generally, if Country Y has likely deployed a large and
unknown number of people close to their border with Country X,
then it is highly likely that Country Y will invade Country X.

Minor Premise: The IMINT analyst asserts that “Country Y has likely

deployed a large and unknown number of people to their border with
Country X”.

Conclusion: Therefore, in this case, it is highly likely that Country Y will
invade Country X.

Here, the ASA utilises the causal generalisation in the major premise to conclude
that an invasion of Country X by Country Y is highly likely because of the deployment
of a large and unknown number of people close Country X’s border.

Looking to the critical questions, one could argue that the causal generalisation is
weak (WCQ1) because the information is not strong enough to warrant the invasion

conclusion (WCQ2). Although there is a large and unknown number of people close
to Country X’s border, the formation may or may not be associated with Country Y’s
military. Thus, the argument, in its current state, possesses a weak inference from cause
to effect. One could argue that a proposition was left implied by the ASA, namely their
assumption that Country Y’s leader is totalitarian and aggressive. For repeatable and
explainable analysis, any assumptions or prior domain knowledge which features in
the ASA’s reasoning – in the form of enthymemes – should be included within an
analysis. The last critical question (WCQ3) pertains to the presence of other causal
generalisations which could be drawn from the same set of information. It should
be easy for the reader to think of other hypotheses (or claims) which could sensibly
be made using the same item of available information like, for example, Country Y
is attempting to bolster their defences along a part of their border due to deteriorating
relations with Country X. However, the production of such an effect requires more than
one cause to produce a stronger causal generalisation and thus, a stronger argument that
contains a concrete representation of the reasoning.
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3.1.1 Multiple Causes

Now the above argumentation scheme is able to model the reasoning in scenarios where
an ASA is required to instantiate an argument with a single cause leading to a single
effect. However, in reality, analysis is never that simple.

Recall step two of the ACH in Section 2.1.5.2. The ASA must list the significant
and relevant information, evidence, assumptions, and anything else that they believe
is missing from their knowledge base. Here, an important point to note is that the
intelligence community may refer to the rows of an ACH matrix as evidence, but row
entries in Heuer Jr.’s original ACH can either be information, evidence, assumptions, or
any missing information that the analyst believes should be included within an analysis.
In the same spirit as Heuer Jr.’s original contribution, the row entries are assumed to
contain either information, evidence, or assumptions, with the caveat that any missing
information should be included as information.

In step three of the ACH, the analyst sequentially goes through each row entry in
the ACH matrix and assesses whether the row entries support or conflict with each
hypothesis by marking whether each item was consistent or inconsistent, respectively,
and anything unrelated is denoted not applicable. In line with the current procedures
for hypothesis evaluation within the intelligence community, there are usually multiple
data points which support (or attack) a hypothesis. In this chapter, these supporting
data are assumed to be synonymous with causes that should form part of the ASA’s
argument for a hypothesis, if and only if they are relevant to the conclusion being
made. As such, there will almost certainly be arguments where more than one datum
produces a linked support for a hypothesis. Due to the process detailed in the ACH, the
causes supporting a hypothesis can be grouped into three different categories, namely
information, evidence, and assumptions, which I explore in more detail below.

Information. The first case of multiple causes is one where an analyst receives more
than one item of raw intelligence from a set of SSAs and wants to instantiate more
than piece of information as a premise in an argument where a hypothesis is the con-
clusion. Turning back to the running example, after initiating a RFI, the ASA receives
another item of raw intelligence from a different single-source counterpart, in addition
to the satellite imagery from the IMINT analyst. This information might be such that
when considered in isolation, there is a weak inference from it to a conclusion due to
a weak causal generalisation within the argument from cause to effect. As previously
mentioned, the raw intelligence from the IMINT analyst might not provide enough in-
formation to conclude that an invasion is imminent as that item alone bares little to no
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relevance to the proposed effect. There are a number of opposing hypotheses which the
ASA could generate using that single piece of available information, such as the forma-
tion of people at the border was a protest about the deteriorating relations between both
countries. However, imagine that a covert HUMINT source stationed within Country
Y and located geographically close to the border of Country X sent a report to the ASA
asserting that the crowd of people were wearing military uniform. Not only does this
corroborate the IMINT analyst’s report on the observations from the satellite imagery,
it would suggest that the formation of people were military personnel. It would be
remiss of the ASA to exclude both items of information (i.e., the satellite imagery and
the report from a HUMINT source) in an argument. In this toy example, the combi-
nation of the two causes would enable a stronger inference to the effect which, in this
case, is the invasion hypothesis. As such, any scheme employed in the representation
of hypotheses supported by information should allow for more than one item of raw
intelligence, if necessary, which the argument from cause to effect does not allow for
in its current form.

Evidence. There may be specific data points within the ASA’s analysis known to
be true such that those items of raw intelligence are treated as evidence. Evidence in
this context can be thought of as certain information such that the probability of that
observed event is equal to unity. The ASA may, however, doubt the veracity of the
source who reported that raw intelligence, if any of the SSA’s prior reports were found
to be, for example, incorrect, biased, or deceptive. The distinction between probability
and uncertainty is discussed in Section 3.1.2.

Ensuring that evidence features within the proposed scheme is important because
evidence is a premise that cannot be defeated. Evidence can be formally represented in
terms of structured argumentation through, for example, the set of axiomatic premises1

Kn within the ASPIC+ framework [177, 150]. The intelligence community reasons us-
ing real-world arguments. As defined in Section 2.3.2.3, real-world data stored within
the AIF can be mapped to an ASPIC+ argumentation theory and then to a Dung-style
argument system in order to allow a computational agent to reason about the acceptabil-
ity of those arguments. The premises containing evidence will always be sceptically
accepted such that they will feature in every extension or be labelled IN for, respec-
tively, both extension- or labelling-based semantics. While this thesis is focused on
developing tools for intelligence settings, such investigative and inquiry-based reason-
ing is carried out in a variety of different domains, such as within investigations by

1Although this thesis does not consider axiomatic premises when dealing with the ASPIC+ framework,
it is important to note that the formalism is capable of representing premises that cannot be defeated.
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law enforcement or by companies who want to make the best decision based upon the
information, evidence, and assumptions available to them. Thus, in such settings, en-
suring that argumentation schemes can differentiate between evidence and information
should make the representation of the reasoning about hypotheses more accurate and
robust.

Assumptions. As alluded to at the start of this section, analysts may hold some as-
sumptions which they draw upon while conducting reasoning. Moreover, defining and
checking assumptions is common practice within intelligence analysis and there are a
number of different tools that analysts employ to do this, such as the Key Assumptions

Check [172], which I briefly introduced in Section 2.1.5.2. Such assumptions are made
explicit within step two of the ACH and should also be clearly instantiated within the
proposed models of an analyst’s argumentation pertaining to hypotheses.

Recall from the running example that the ASA assumes that Country Y’s leader is
an authoritarian dictator with a thirst for power and resources. This assumption featured
in the analyst’s reasoning such that they concluded that an invasion was high likely.
Without this assumption, the causal generalisation does not seem strong at all such
that the argument can be attacked using all three critical questions. For instance, when
evaluating the reasoning involved with the information from the IMINT analyst only,
one could argue that the causal generalisation is weak (CQ1) because the information
(i.e., a grouping of people) is not necessarily indicative of an invasion (CQ2) and other
hypotheses (CQ3), such as a protest or Country Y bolstering up their defences, could be
supported by the same item of raw intelligence, thus explaining why the formation of
people were at the border. The argument within this example would be much stronger
if it also included the analyst’s assumption about the nature of Country Y’s leader.

3.1.2 The Distinction Between Probability and Confidence

In a general sense, the probability of a cause or its effect, respectively, pertains to
the likelihood of a SSA observing an event or an ASA’s judgement about probability
in light of the available data. Whereas, confidence captures an analyst’s belief about
uncertainty in their probabilistic judgements (i.e., how confident the analyst is in the
likelihoods output from their analysis or the information received from their single-
source counterparts). As discussed in Section 2.1.4, the intelligence community de-
termines and communicates probabilities and uncertainties qualitatively by employing
tools, such as the Probability (or Uncertainty) Yardstick, but how levels of confidence
are communicated in practice is not well understood because analysts often only in-
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clude the probabilities of hypotheses within finished intelligence products [67]. Both
the ASA and SSA make probabilistic judgements. However, there is also a distinction
in the confidence of those judgements for both the set of SSAs and the ASA because
of, first, the uncertainty in a SSA’s measurement and second, how much faith the ASA
puts in the SSA’s report.

Consider first the quantification of probability and confidence from the SSA’s per-
spective. Think back to the IMINT analyst’s collection of satellite imagery from the
operational environment which they shared with the ASA as an item of raw intelli-
gence. Suppose that a different SSA conducted another collection and discovered that
there was likely thirty main battle tanks (MBTs) close to Country X’s border. Based
upon the domain expertise acquired by the SSA during previous collections, the IMINT
analyst likely recognised the shape of thirty MBTs in the captured image. The confi-
dence in that probabilistic judgement depends on a number of factors, such as the time
of day that these images were captured, any cloud cover obstructing the image, the
experience of the IMINT analyst, etc. For instance, if the images were taken in the
middle of the daytime and with good visibility, then the IMINT analyst should have
higher confidence in the conclusions they draw from their data. However, imagine that
the image was acquired at dusk and under poor visibility, the analyst might not be so
sure in this scenario.

Now think about the estimation of probability and confidence from the ASA’s view-
point, which is the most pertinent to the tools, techniques, and algorithms proposed
within this thesis. The ASA receives a report from the IMINT analyst which includes
the assertion that “there were likely thirty MBTs close to Country X’s border”, and the
confidence in this judgement according to the SSA is high due to good visibility and the
time of day when the image was taken. The ASA is now required to incorporate this raw
intelligence into their analysis. While the ASA could blindly instantiate the aforemen-
tioned report as a premise within an argument for the invasion hypothesis, as well as
including the probability (i.e., likely) and confidence (i.e., high) of such a premise, the
ASA should evaluate the confidence they have in that source and the reported proposi-
tional content before including it within an argument. Arguments for a hypothesis that
contain the information received from a SSA possess the argument structure of argu-

mentum ad alia which is where, in this case, the ASA makes an argument that is based
upon what another person has previously asserted [36]. Certain annotation schemes,
such as Inference Anchoring Theory [37], enable the annotation of reported speech by
partitioning natural language corpora into sets of locutions, reported propositions, and
the actual propositional content contained within those assertions. Drawing on speech
acts theory [75], one of the most prominent argumentation-based accounts of inter-
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locutor communication, the reported speech and the propositional content are linked
through an illocutionary force which combines utterances with propositions that form
part of the argumentation being put forth. The ASA must make a judgement about how
much confidence they hold in the propositional content reported by the SSA. Consider
the case where it was known that the particular SSA who sent the report usually drew
inaccurate conclusions from satellite imagery. In this instance, the ASA might assign
a lower confidence to the assertion and the probability of the event contained within
it (i.e., likely) such that the cause provides less support for the hypothesis within the
argument in question.

Confidence also features in the assumptions made by the ASA during their analysis.
For example, think back to the assumption at the start of this chapter: “Country Y’s
leader is likely a dictator with a thirst for power and resources”. The ASA would
assign a high confidence to this assumption if the modus operandi of Country Y’s leader
remained unchanged. However, consider the case where Country Y’s leader recently
decided to hold a fair and democratic election. Here, the ASA would indeed be required
to lower the confidence of their dictator assumption due to increased uncertainty caused
by a change in the leader’s most recent actions.

In the subsequent subsections, I discuss notions of confidence in causes and the
probability of information, evidence, and assumptions, as well as hypotheses from the
perspective of the ASA.

3.1.3 Confidence in Causes

As I described in the previous subsection, when the ASA receives items of reported
information or evidence, or when they make assumptions, there will always be an asso-
ciated confidence due to the context within which intelligence analyses are conducted.
Confidence has been handled by an adapted version of the ACH process within the
handbook, Quick Wins for Busy Analysts [222], where each row within the ACH ma-
trix is assigned a colour (i.e., green, yellow, red) which is synonymous with a datum’s
uncertainty. However, this approach does not incorporate these confidence levels into
any of the downstream judgements about the probabilities of hypotheses, as I described
in Chapter 2.

ASAs reason with information, evidence, and assumptions that are conflicting, in-
complete, potentially deceptive, and false. This makes reasoning in such a space dif-
ficult due to the inherent uncertainty in every data point within an analysis. Looking
back to the running example and the information shared with the ASA by the covert
HUMINT analyst, the ASA must think critically about the information that their single-
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source counterpart has shared. For instance, the ASA could conduct a coarse count,
counting the number of times the HUMINT agent was right or wrong previously, to
assign a confidence to the reported information. Alternatively, as the information re-
ported by the HUMINT agent is a witness account, the ASA might draw upon argu-
ments about witness testimony and the critical questions within, say, Walton’s argument
from witness testimony [242, 178], which are listed below:

WTCQ1: Is what the witness said internally consistent?

WTCQ2: Is what the witness said consistent with the known facts of the
case (based on evidence apart from what the witness testified to)?

WTCQ3: Is what the witness said consistent with what other witnesses
have (independently) testified to?

WTCQ4: Is there some kind of bias that can be attributed to the account
given by the witness?

WTCQ5: How plausible is the statement asserted by the witness?

By sequentially working through each of the above critical questions, the ASA
is able to reason about the confidence in the reported information and its source,
the HUMINT agent. The first question (WTCQ1) pertains to the consistency of the
HUMINT’s assertion, which in this case is found to have no internal conflicts. The
reasoning involved with the second (WTCQ2) and third (WTCQ3) critical question is
somewhat related because the satellite imagery observed a large number of people in
Country Y and close to the border Country X. In this case, the images of the grouping of
people would be classified as evidence, unless the photograph was a fake or taken prior
to the time frame required for analysis (i.e., before the relations between both countries
had deteriorated). Given the photograph was taken after the ASA raised a RFI, the un-
certainty within the image is not about its contents, but who the people in the image are
associated with, and what their plans and goals are. As the HUMINT agent reported
that the formation of people were wearing military uniform, the HUMINT agent’s ac-
count is consistent with the known facts (WTCQ2) and what others have independently
testified to (WTCQ3). The fourth critical question (WTCQ4) forces the ASA to think
about any biases which might feature in the report from the HUMINT source. For ex-
ample, imagine that the ASA knew that the HUMINT agent owned a stock investment
portfolio that contained the vendors of military equipment for both Country X and Y.
One could assume that the covert information source might be influenced by profit and
motivated to report that the grouping of people were wearing military uniform. Thus,
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in this case, the HUMINT agent’s assertion could potentially be biased and the confi-
dence in the propositional content within their statement should be lowered as a result.
Finally, the ASA must consider the plausibility of the witness’ statement (WTCQ5),
which is indeed believable given the deteriorating relationship between both countries
and the satellite imagery from the IMINT source.

Although the above example focuses on a HUMINT source, the ASA should reason
about the confidence in reports of both information and evidence, and also for any as-
sumptions made by the ASA that feature within the analysis. The prescribed method of
choice for uncertainty quantification should be left up to the analyst. However, one can
easily see that incorporating the confidence of items of information, evidence, and as-
sumptions within arguments becomes increasingly important as the amount of sources
who report conflicting data increases. Expressing such uncertainty within arguments
about hypotheses should enable a better representation of the ASA’s reasoning, as well
as enabling them to produce better probabilistic estimates.

3.1.4 The Probability of Causes and their Effect

The set of premises supporting a conclusion in the form of a set of causes leading to
an effect, respectively, are closely related. The probability of items of information,
evidence, and assumptions and how they affect the probability of a hypothesis should
be no different. For instance, imagine that a hypothesis was supported by two causes,
both of which had a probability of highly unlikely. In this instance, one would ex-
pect the probability of the hypothesis supported by those premises to be lower also.
ASAs employ analytical techniques, such as the ACH in Section 2.1.5.2, to calculate
the probability of a hypothesis by conducting a coarse count of the number of times
that row entries are inconsistent with the hypothesis in question, which provides a ro-
bust evaluation of a hypothesis’ probability. The probabilistic judgements made by
the analyst often concern novel events, such that those probabilities are epistemic and
incorporate an analyst’s subjective belief. It may seem that the use of conditional prob-
ability is a perfect fit for the representation and modelling of the dependence of a set
of premises on the hypotheses they support. However, it is incredibly challenging to
reliably compute the probability of observing, say, an item of information conditioned
on a hypothesis, especially for circumstances that haven’t happened before, which is
often the case within intelligence settings. To compute the likelihood of a set of row
entries conditioned on a hypothesis, the analyst would be required to calculate the joint
probability of a hypothesis and the information, evidence, and assumptions, as well
as make a probabilistic judgement about that hypothesis’ prior. As many of the situa-
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tions being assessed concern non-repeatable events, it is highly unlikely that those joint
probabilities and priors will be correct or reliable. As I will show in Chapter 5, an ana-
lyst’s set of prior probabilities for hypotheses can be refined through an approach that
combines Bayes’ theorem and probabilistic argumentation frameworks. However, for
the purposes of this chapter, the proposed argumentation scheme, the Argument from

Multiple Causes to Effect, only includes marginal probabilities.

3.2 The Argument from Multiple Causes to Effect

The ASA is required evaluate the set of MECE hypotheses using the information and
evidence shared by SSAs and their own assumptions to produce estimates of the prob-
ability of all hypotheses that feature within their analysis, as per the ACH as discussed
in Section 2.1.5.2. As in Section 2.1.1, after analysis, the ASA produces a finished

intelligence product, containing the lead hypothesis, its probability of occurrence, and
any items of diagnostic information, which is then disseminated with stakeholders for
downstream decision-making. In Section 3.1, I discussed how Walton’s argument from
cause to effect is capable of modelling the inference from a single item of informa-
tion, evidence, or assumption to a hypothesis. However, as I explored in the previous
section, the reasoning underpinning a hypothesis is often never as simple as a single
cause supporting an effect. For any proposed scheme to provide tangible benefit to the
intelligence community, it should allow analysts to include as many supporting items
of information, evidence, and assumptions as they believe are necessary, along with
their associated probability and confidence levels, in order to fully describe the out-
puts from their analysis. Moreover, during analysis, analysts may formulate narratives
associated with data that supports a given hypothesis to aid in the evaluation of those
data and the judgement of the probability of hypotheses. In [25], Bex et al. propose
a comprehensive framework for evaluating evidence in criminal cases within the legal
domain, using causal stories and argumentation. This hybrid theory is relevant to in-
telligence analysis, where analysts often deal with complex, incomplete, conflicting,
deceptive, and missing data. In such contexts, constructing plausible narratives could
help the analyst understand possible scenarios, whilst also ensuring that those stories
are grounded in logical reasoning, through use of argumentation. The scheme proposed
in this chapter also draws upon argumentation, namely an adaptation of an argumen-
tation scheme, to enable analysts to produce sound representations of the reasoning
underpinning hypotheses.

In this subsection, I take Walton’s general scheme, the argument from cause to
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effect, and deepen its level of specificity to enable it to be applied specifically in intelli-
gence contexts where probabilistic reasoning is used. The proposed scheme is capable
of representing an argument for a hypothesis that is supported by multiple causes with
probabilities from a set of SSAs, and the ASA’s confidence in those reports, as well
as the analyst’s judgement about the probability of a hypothesis. I now present the
adapted scheme below:

An Argument from Multiple Causes to their Effect:

Major Premise: Generally, if the set of information I1, . . . , IN reported by the sources
SI1 . . . ,SIN and evidence E1, . . . ,EM reported by the sources SE1 , . . . ,SEM have been
observed, and based upon the assumptions A1, . . . ,AK , with some probability and in
some confidence interval, then the hypothesis H has occurred/is occurring/will occur
with some probability P(H).

Minor Information Premise 1: The source SI1 asserts the information I1 was observed with
some probability P(I1), and the confidence in that assertion and the source’s estimate
is ±σI1 .

. . .

Minor Information Premise N: The source SIN asserts the information I1 was observed with
some probability P(IN), and the confidence in that assertion and the source’s estimate
is ±σIN .

Minor Evidence Premise 1: The source SE1 asserts evidence E1 was observed with certainty
such that its probability P(E1) equals unity, and the confidence in that assertion and
the source’s estimate is −σE1 .

. . .

Minor Evidence Premise M: The source SEM asserts evidence EM was observed with cer-
tainty such that its probability P(EM) equals unity, and the confidence in that assertion
and the source’s estimate is −σEM .

Minor Assumption Premise 1: The assumption A1 employed during analysis has a proba-
bility P(A1) and a confidence interval equal to ±σA1 .

. . .

Minor Assumption Premise K: The assumption AK employed during analysis has a proba-
bility P(AK) and a confidence interval equal to ±σAK .

Conclusion: Therefore, the hypothesis H has occurred/is occurring/will occur with some
probability P(H).

The above argumentation scheme can model the reasoning involved with data points
which support hypotheses within the ACH. The scheme enables ASAs to instantiate all
relevant and necessary items of information, evidence, and assumptions, as well as their
associated probabilities and confidence intervals. The scheme can also model the rea-
soning about past, present, and future hypotheses, which makes it fit for use in not only
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intelligence settings, but also in other investigative and inquiry-based settings, where
a person is required to reason under uncertainty, such as in law enforcement, business
intelligence, legal cases, etc. The distinction between the probability of an item of
information and evidence, and the confidence interval assigned by the ASA, is made
clear which enables them to allocate a strength (or weight) to the set of minor premises.
The probability in the conclusion represents the analyst’s judgement about the likeli-
hood of a hypothesis, and it is a possible representation such that it is not checked for
consistency against the set of probabilities and confidence intervals contained within
each premise. As I will show in Chapter 5, the probability of a hypothesis (i.e. the
conclusion of the argument) can be verified using the set of premises. However, the
addition of those refined probabilities into the above scheme, the argument from multi-
ple causes to effect, is a task left for future work. An important point to highlight here
is that the confidence interval assigned to a premise that contains evidence is always
negative (i.e., −σEi ). The reason for this is that the probability of a Minor Evidence

Premise will always equal unity – i.e., P(Ei) = 1 – because, as I described in Section
3.1.1, evidence is an item of factual information. However, the analyst might, for ex-
ample, doubt the honesty of the source who reported that fact. Finally, the scheme
enables enthymemes to be explicitly instantiated which should enable other analysts to
understand the entirety of an ASA’s thinking during analysis.

Returning to the running example for the penultimate time. Recall that:

• The ASA assumed that “Country Y’s leader is likely (i.e., 0.55 < P(A1)< 0.7) a
dictator with a thirst for power and resources” with a small uncertainty interval
(i.e., ±σA1 = 0.05) initially. However, Country Y’s leader recently decided to
hold a fair and democratic election such that the uncertainty of the dictatorship

premise increased (i.e., ±σA1 = 0.2).

• The IMINT source SI1 reported that “Country Y has likely deployed a large and
unknown number of people close to their border with Country X” and the ASA’s
confidence in that assertion is high such that the uncertainty interval is small (i.e.,
±σI1 = 0.01).

• A different IMINT source SI2 reports “there was likely (i.e., 0.55 < P(I2)< 0.7)
thirty MBTs close to Country X’s border” but there is a larger uncertainty interval
(i.e., ±σI2 = 0.5) associated with this report because the image was collected at
dusk, when there was a lot of cloud cover, and the source frequently makes wrong
observations.

• A covert HUMINT source SI3 asserts that “the crowd of people in Country Y and
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at Country X’s border was almost certainly (i.e., P(I3) > 0.9) wearing military
uniform”. However, the ASA deems the uncertainty in this source’s estimate to
be high (i.e., ±σI3 = 0.5) because the source owns stock investments of Country
X and Y’s vendors of military equipment.

Using the details above, the argument from multiple causes to effect can be instan-
tiated as follows:

Major Premise: Generally, if “Country Y has likely (i.e., 0.55 < P(I2) < 0.7) deployed a
large and unknown number of people close to their border with Country X”, “there
was likely (i.e., 0.55 < P(I2) < 0.7) thirty MBTs close to Country X’s border”, “the
crowd of people in Country Y and at Country X’s border was almost certainly (i.e.,
P(I3)> 0.9) wearing military uniform”, and based upon the assumption that “Country
Y’s leader is likely (i.e., 0.55 < P(A1) < 0.7) a dictator with a thirst for power and
resources”, and according to the assigned confidence intervals, then “it is highly likely
(i.e., 0.75 < P(H1)< 0.85) that Country Y will invade Country X”.

Minor Information Premise 1: The source SI1 asserts that “Country Y has likely (i.e., 0.55<
P(I2) < 0.7) deployed a large and unknown number of people close to their border
with Country X”, and the confidence in that assertion and the source’s estimate is
equal to σI1 = 0.01.

Minor Information Premise 2: The source SI2 asserts “there was likely (i.e., 0.55 < P(I2)<

0.7) thirty MBTs close to Country X’s border”, and the confidence in that assertion
and the source’s estimate is equal to ±σI2 = 0.5.

Minor Information Premise 3: The source SI3 asserts that “the crowd of people in Country
Y and at Country X’s border was almost certainly (i.e., P(I3)> 0.9) wearing military
uniform”, and the confidence in that assertion and the source’s estimate is equal to
±σI3 = 0.5.

Minor Assumption Premise 1: The ASA assumed that “Country Y’s leader is likely (i.e.,
0.55<P(A1)< 0.7) a dictator with a thirst for power and resources” with a confidence
interval equal to ±σA1 = 0.2.

Conclusion: Therefore, the ASA asserts that “it is highly likely (i.e., 0.75 < P(H1)< 0.85)
that Country Y will invade Country X”.

Here, each minor premise is assigned a probability based on either the SSA’s or
ASA’s judgement and depending on whether the premise is item of information, evi-
dence, or assumption. The ASA then employs the confidence interval to specify how
much they believe a source’s assertion, which impacts how much support each premise
provides for a hypothesis. The proposed scheme should enable analysts to fully explain
their reasoning about hypotheses, probabilities, and uncertainty, as well as reducing the
number of enthymemes present within analysis.
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3.2.1 Extending the Critical Questions

As with any other argumentation scheme, the extended scheme should be accompanied
by a set of critical questions which enables the analyst to critically assess the confidence
of each premise, its source, and the probabilistic estimates made within the argument.
The critical questions for the proposed scheme were adapted from the questions found
within Walton’s original argument from cause to effect. The adapted set of critical
questions are presented below:

CQ1: How strong is the causal generalisation?

CQ2: Are there any potential items of information or evidence that have
not been collected which should be in order to strengthen the causal
generalisation?

CQ3: Are the probabilities of the information, evidence, and assumptions
reasonable?

CQ4: Are the confidence intervals of the information, evidence, and as-
sumptions reasonable?

CQ5: Are there any other reports of information and evidence, or as-
sumptions, which disagree with the propositional content within each
minor premise?

CQ6: Are there any items of information, evidence, or assumptions that
would increase the uncertainty in a minor premise’s confidence in-
terval?

CQ7: If one (or more) of the minor premises were found to be false,
would the strength of the inference change?

CQ8: Are the set of information, evidence, and assumptions (if there is
any) strong enough to warrant the causal generalisation?

CQ9: Are there any other causal factors that interfere with the production
of the hypothesis in the given case?

CQ10: Are there any other hypotheses which can be inferred from the
minor premises available?

CQ11: Are there any other arguments containing other hypotheses with
a different set of minor premises that are in conflict with this argu-
ment?
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The eleven critical questions above were systematically derived from Walton’s set
of questions in the original argument from cause to effect, with some slight alterations
and additions to ensure the questions were appropriate for use within intelligence set-
tings. The extended questions should enable the analyst to critically evaluate the argu-
ment from multiple causes to effect by focusing their attention on: the soundness of the
argument; any weak points which require the collection of more information through
RFI generation; the quality of arguments; and whether the probabilities and confidence
levels are reasonable.

Coming back to the running example for the last time, CQ1 is the same as WCQ1
in Section 3.1. The ASA uses CQ1 to assess how strong the argument for the invasion
hypothesis is which, for this illustration, they find to be very strong because they have
listed all the relevant information and assumptions within the generalisation.

Moving onto to CQ2. Although the ASA has instantiated an argument using the
scheme, this question enables them to think about whether they require more informa-
tion to make their argument and if they do, then they should raise another RFI to obtain
the missing raw intelligence. Perhaps, after reading Minor Information Premise 2, the
ASA would like to know the type of MBT at Country X’s border and therefore, task
another covert HUMINT source to collect this raw intelligence.

CQ3 enables the ASA to consider whether the probabilistic estimates are reason-
able and if they are not, then the ASA should alter those probabilities or change the
confidence interval. For example, the source SI3 in the Minor Information Premise 3

asserts that it is almost certain that the formation of people at Conutry X’s border were
wearing military uniform. However, the ASA might question how close the HUMINT
source was to the observation, how good their eyesight is, the visibility on that day,
or whether the source was in fact biased, which was the case for this example. The
fact that the source is biased would indicate that the ASA should either reduce the
likelihood of the observation or the increase the uncertainty interval.

CQ4 is similar to CQ3. However, CQ4 deals with instances where the probabilities
of information, evidence, and assumptions are reasonable but the confidence interval is
not. Perhaps the ASA’s confidence was too large (small) for the information in a minor
premise and should be decreased (increased).

ASAs try to reduce confirmation bias when conducting analyses, as I briefly dis-
cussed when introducing the ACH in Section 2.1.5.2. Utilising conflicting information,
evidence, and assumptions in the assessment of premises for arguments containing hy-
potheses is akin to that practice (CQ5). When a data point disagrees with one (or more
of the) minor premise(s) within an argument, the ASA might reduce either the proba-
bility, confidence interval, or both for the conflicted minor premise(s).
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CQ6 forces the ASA to think about whether there are any other items of raw in-
telligence or assumptions that would increase the uncertainty of a minor information
or evidence premise. For example, if the ASA received a report stating there was a
show for MBT enthusiasts close to the border of Country X at the same time as the
observation made by the source SI2 , who asserted Minor Information Premise 2, then
this would increase the uncertainty in the propositional content reported by the source
SI2 , and ultimately decrease the probability of the invasion hypothesis.

Considering how the strength of the causal generalisation changes as a result of
false propositional content within any of the minor premises is important (CQ7). Such
a question should enable the ASA to consider how dependent the hypothesis is on one
(or more) of the premise(s) which support it. Moreover, this question is similar to step
seven of the ACH where the analyst is required to sequentially remove each row entry
from the ACH matrix in order to assess whether the probability of hypotheses changes.

CQ8 is similar to WCQ2 in Section 3.1 but has been extended to included the items
of information, evidence, and assumptions found with the proposed scheme.

CQ9 is the same as WCQ3.
CQ10 draws upon WCQ3 but for the case of hypotheses. CQ10 allows the ASA

to think about the production of alternative hypotheses using the same set of minor
premises instantiated within the scheme.

Finally, CQ11 enables the ASA to think about the argument as a whole. The ASA
must assess whether there are any other arguments containing alternative hypotheses
and a different set of minor premises that might be in conflict with the one instantiated
using the scheme.

3.3 Summary

In this chapter, I have discussed Walton’s argument from cause to effect and accom-
panying critical questions with the context of intelligence settings. I explored the dif-
ferent cases where the specifics of the original scheme is not fit for operational use
within such settings. I then proposed an adapted version of the scheme so that it is
capable of representing the inference from a set of premises – namely information, evi-
dence, and assumptions – to a hypothesis, which is the conclusion of the argument. The
more detailed scheme also allows the ASA to include probabilistic judgements about
the causes and hypothesis under scrutiny, as well as a description of the uncertainty
present within the propositional content of each minor premise. I also proposed an
extension to Walton’s set of critical questions to enable the ASA to critically evaluate
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their argumentation. The extended scheme should enable ASAs, as well as other type
of analyst reasoning within investigative and inquiry-based settings, to fully capture
their rationale, but this claim should be tested empirically in future work to ascertain
whether the scheme works in practice.

This chapter has demonstrated that argumentation schemes can be employed to rep-
resent intelligence analysts’ reasoning about the support for a hypothesis that is pro-
vided by items of information, evidence, and assumptions. In the next chapter, I assess
the feasibility of using AI, specifically large language models, for MECE hypothesis
generation for a real-world intelligence scenario.



Chapter 4

On Large Language Models for
Hypothesis Generation

While the previous chapter focussed on hypothesis representation, this chapter con-
cerns hypothesis generation. In this chapter, I present the results from experiments
on a number of state-of-the-art large language models employed for hypothesis gen-
eration within an intelligence context. Models were tasked with generating a number
of hypotheses using information from a real-world intelligence scenario. The outputs
from models were assessed on three axes, namely: the word-level semantic similarity
between target hypotheses and model completions; the sentence-level semantic similar-
ity between target hypotheses and generations; and the probability that a set of model
completions contained hallucinations. I then discuss those results and address whether
large language models, in their current state, are an effective type of model for hypoth-
esis generation within an intelligence context. I conclude the chapter with a summary
and identify future avenues to extend the work.

4.1 Introduction

Hypothesis generation is a fundamental process within the Intelligence Cycle. It oc-
curs at the start of the analysis stage, where analysts must generate the set of MECE
hypotheses to ensure that they evaluate the set of all possible and plausible outcomes
for a given scenario. As I discussed in Section 2.1.5.1, there are a number of differ-
ent analytical techniques for hypothesis generation, such as Simple Hypotheses Gen-

eration, Quadrant Hypothesis Generation, and the Multiple Hypotheses Generator™

84
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[173]. The ASA employs the aforementioned tools depending on the situation being
evaluated. For instance, the ASA might use Simple Hypothesis Generation when trying
to gain a better understanding of a time critical and unfolding scenario, Quadrant Hy-

pothesis Generation when there are two clear forces driving a situation, or the Multiple

Hypotheses Generator™ when trying to explore the space of all potential hypothe-
ses. While these techniques help analysts generate good hypotheses, the use of AI,
specifically large language models, could aid the process and allow analysts to identify
previous unconsidered hypotheses.

Of late, large language models have taken the world by storm, and their applications
are numerous and seemingly ever-increasing. For example, large language models have
been employed in: general-purpose AI chat bots, which can retrieve and present infor-
mation in the form of text [201, 214, 87, 158, 122], and even implement algorithms
in specific programming languages [51]; creative work, such as short-form writing, for
idea generation [93], poetry [49], and works of fiction in multiple languages [182], as
well as long-form writing, for co-writing screenplays and theatre scripts [148]; knowl-
edge representation and reasoning [209, 246, 140, 28, 137, 61]; law, for case prediction
[95] and question answering [249, 29, 120, 194, 107]; and social sciences, in order to
both analyse [147, 170] and simulate human behaviour and relationships [165], to name
a few pertinent examples.

Many of the recent, exciting advances within the field of natural language process-
ing can be attributed to the capabilities of large language models. As I discussed in
Chapter 2, some researchers, such as Snidaro, have made the claim that such models
could potentially “revolutionise” [204, p. 449] the analysis tasks within Intelligence

Cycle. One obvious question that arises from such a statement is whether large lan-
guage models are, in fact, capable of generating previously unconsidered hypotheses
for intelligence analysts. As I describe in Section 4.2.3, large language models are
capable of conducting conditional text generation, based upon a provided context. As
a task, hypothesis generation requires an analyst to reason abductively, in that they
must observe, understand, and synthesise raw intelligence and employ that data to in-
fer hypotheses. In [136], Liu, Neubig, and Andreas show that large language models
perform well at some tasks involving deductive and inductive reasoning. However,
their reasoning abilities dwindle when asked to conduct abductive reasoning.

In the context of the current capabilities of large language models, this chapter
makes one specific contribution, a feasibility study was conducted which considered
whether large language models could be leveraged for hypothesis generation within in-
telligence settings. A number of different, state-of-the-art language models were tested
to assess how similar model completions were to target hypotheses, at the sentence-
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and word-level, and the probability of model hallucinations was quantified. The results
presented in this chapter are a first step towards automated hypothesis generation for
intelligence analysts, and should help guide future research on the topic.

The chapter is structured as follows. The methodology employed in the study
of large language models for hypothesis generation is described in Section 4.2. The
dataset used in the testing is introduced in Section 4.2.1, and the preparation and an-
notation of it is reported on in Section 4.2.2. The large language models employed in
the study and how they were prompted to generate hypotheses is explained in Sections
4.2.3 and 4.2.3.1, respectively. The way in which the outputs from those models were
evaluated is made clear in Section 4.2.3. Results from a number of experiments are
presented in Section 4.3 and discussed in Section 4.4. The chapter concludes with a
summary and avenues for future work in Section 4.5.

4.2 Methodology

In this section, I describe the methods employed in the creation and use of a dataset,
which contained hypotheses supported by sets of information. The dataset was em-
ployed to prompt a series of large language models to ascertain whether such models
could be used to generate the set of MECE hypotheses. Due to the nature of intelligence
analysis, many finished intelligence products are classified. There are a number of rea-
sons for this, such as the reports generated by ASAs may contain sensitive information
about people and collection methods, to a name a couple. The only openly available
data, which includes such unclassified intelligence products, can be found on the X,
formerly Twitter, account of the United Kingdom’s Ministry of Defence1, where they
have been providing updates on the ongoing invasion (or ‘special military operation’,
as the Russian government refer to it) between Russia and Ukraine. The Ministry of
Defence started providing updates on developments at the start of the conflict to counter
the amount of misinformation on the internet.

An important point to note here is that the scheme proposed in Chapter 3, the
argument from multiple causes to effect, was not employed in the prompting of large
language models in this chapter. The reason for this is that there was no way to verify
whether a datum that supported a hypothesis was an item of information, evidence
or assumption. Thus, it was assumed that the Tweets in the dataset from the United
Kingdom’s Ministry of Defence only contained information and hypotheses.

1https://x.com/DefenceHQ (Accessed on: 10.02.2024)

https://x.com/DefenceHQ
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4.2.1 Dataset

The United Kingdom’s Ministry of Defence provided this research with a total of 6,536
Tweets from their X account, for the purposes of assessing the feasibility of employ-
ing large language models for hypothesis generation. The Tweets provided date from
1st February 2022 to 23rd October 2023. A subset of the shared Tweets contained
intelligence reports that included at least one hypothesis. An example, comprised of
three Tweets2, is presented in Figure 4.1. The Tweets contained either information
or a hypothesis, where each statement was accompanied by a qualitative description
of probability (i.e, high likely and likely), in line with the Probability (or Uncertainty)
Yardstick, as described in Chapter 2.

Figure 4.1: An example set of Tweets from the X account of United Kingdom’s Min-
istry of Defence, published on 25th April 2023.

The first and second Tweet can be grouped into items of information which sup-
port the hypothesis asserted in the third Tweet. The first Tweet contains some raw
intelligence shared by the Ukrainian General Staff and states that the rate of Russian
casualties highly likely fell by 30%. An analyst from the United Kingdom’s Ministry

2https://x.com/DefenceHQ/status/1650739827552186370 (Accessed on: 10.02.2024)

https://x.com/DefenceHQ/status/1650739827552186370
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of Defence then supplements this information with a corroborating sentence about the
‘exceptionally heavy Russian casualties over [the] January-March 2023’ time period.
This validates the Ukrainian General Staff’s assessment and implies that Russia’s daily
casualty rate was always likely to decrease because it was exceedingly high in the
months prior to the report in April 2023.

The second Tweet appeals to data communicated by the Ukrainian General Staff
which indicated that the average number of daily Russian casualties decreased from
776 to 568. The second Tweet concludes with a statement made by the United King-
dom’s Ministry of Defence containing their belief about the uncertainty in the raw
intelligence shared by the Ukrainian General Staff, where they deemed it ‘likely accu-

rate’. The presentation and use of raw intelligence, probability, and uncertainty within
the analysis for this particular example is similar to the proposal made in this thesis
for an argumentation scheme to represent hypotheses, as presented in Chapter 3. For
instance, one can think about the information and probabilities shared by the Ukrainian
General Staff as a report from a SSA and the inclusion of such a datum in an analysis
is accompanied by a verbal uncertainty quantification made by an ASA, which in this
case is an analyst from the United Kingdom’s Ministry of Defence.

As previously mentioned, the third Tweet contains a hypothesis, which was in ac-
cordance with Pherson and Heuer Jr.’s definition, as per Chapter 1. The hypothesis is
a statement in the most literal sense of the word because it is a single sentence. Many
of the other hypotheses within the data shared by the United Kingdom’s Ministry of
Defence were sentences. However, there were instances where the same items of in-
formation supported more than one hypothesis, and the annotation of such cases is de-
scribed in more detail in Section 4.2.2.1. Similar to the items of raw intelligence, each
hypothesis contained a qualitative probabilistic judgement pertaining to the likelihood
of that hypothesis.

In the next subsection, I describe the preparation and annotation of the dataset
so that it could be employed for the fine-tuning and prompting of a number of large
language models.

4.2.2 Data Preparation and Annotation

The 6,536 Tweets shared with this research by the United Kingdom’s Ministry of De-
fence contained all the Tweets published on their account over a one and half year
period. A subset of the Tweets contained intelligence reports which were similar to the
example presented in Figure 4.1. Tweets that potentially included intelligence prod-
ucts were identified and extracted using a set of unique identifiers, which are presented
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in Appendix A.1. The dataset was partially pre-processed using Python [232], and a
combination of Pandas [211] and Regular Expressions [4], to extract potential intelli-
gence reports from the dataset using the unique identifiers. This reduced the initial set
of 6,536 Tweets to 3,197 Tweets.

The strings contained within each set of Tweets were split into sentences, a type
of EDU (Section 2.3.3.1) that is widely employed throughout the natural language
processing literature. Hypotheses were identified manually within the reduced dataset
according to Pherson and Heuer Jr.’s definition of a hypothesis in [173]. Drawing upon
the most literal use of the word statement, hypotheses were assumed to be one sentence
in length. In reality, a hypothesis might be longer than one sentence. However, this
assumption was employed to ensure that the annotation of the data was consistent.

4.2.2.1 Strategic, Operational, and Tactical Hypotheses

In cases where there was more than one hypothesis that was supported by the same
set of information, I tried to ascertain whether the raw intelligence supported either a
tactical, operational, or strategic hypothesis. In a broad sense, the difference between
those three types of hypothesis is the time horizon upon which they are observed, their
scope, and their level of detail. The difference between the aforementioned types of
hypotheses is made apparent when looking to the different definitions of strategic, op-
erational, and tactical intelligence. For example, strategic intelligence is defined by the
United States’ Department of Defence as the

“intelligence required for the formation of policy and military plans at

national and international levels.” [225, p. 522]

Strategic hypotheses focus on overall objectives which could take a great deal of
time to come to fruition. For instance, imagine the hypothesis: Country A, our neigh-

bour and adversary, will highly likely invade. The outworking of such a hypothesis
may take a considerable amount of time because of all the planning and logistics in-
volved in such an operation. The realisation of that hypothesis depends on the level
of readiness of that hostile nation, as well as the success of a number of operational
objectives, which must be achieved before the strategic hypothesis occurs.

The United States’ Department of Defence also defines operational intelligence
which can, again, be employed to gain an understanding of operational hypotheses,
and strategic ones too. Operational intelligence is defined as

“intelligence that is required for planning and conducting campaigns and
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major operations to accomplish strategic objectives within theatres or op-

erational areas.” [225, p. 399]

Here, the link between strategic and operational intelligence is made explicit. Op-
erational intelligence informs strategic objectives and thus, strategic hypotheses. The
raw intelligence received, and hypotheses generated and evaluated, at an operational
level shed light on the probability of strategic hypotheses. It would be remiss of the
analyst to omit such operational, raw intelligence from their reasoning about strategic
hypotheses.

Tactical hypotheses are the final type of hypothesis. Such hypotheses pertain to sit-
uations and events that are evolving now. For instance, a commander might raise a RFI,
in accordance with the Intelligence Cycle, as discussed in Chapter 2, concerning the
movement of a foreign country’s military personnel, who just so happen to be situated
on the same battlefield as them. The ASA, who received collected information pertain-
ing to that evolving, tactical situation may well use such data in combination with other
items of operational and tactical intelligence in order to understand what the adversary
intends to do operationally and strategically. In this instance, the tactical hypothesis,
which has been evaluated using tactical intelligence, should aid in the evaluation of op-
erational hypotheses, and operational hypotheses and intelligence should be employed
in the evaluation of strategic ones too. Tactical hypotheses were not observed within
the dataset provided by the United Kingdom’s Ministry of Defence, which was most
likely due to their level of classification and the fact that the United Kingdom is not
currently at war. However, understanding the rich interplay between such hypotheses
should provide a good understanding of how, once evaluated, each type of hypothesis
can be employed in the evaluation of others. The relationship between strategic, op-
erational, and tactical hypotheses seemingly forms something akin to a tree structure,
where the evaluations of operational and tactical hypotheses could aid in the assess-
ment of strategic hypotheses. However, formally defining such a relationship is a task
left for future work.

Upon studying the dataset, it was noted that for Tweets which contained more than
one hypothesis, there were a series of operational hypotheses supported by operational
intelligence, which usually culminated in support for a strategic hypothesis. The anno-
tation process for those Tweets was the same and goes as follows. First, the task was
to split the Tweets into sentences, identify the strings that contained hypotheses and
decide whether they were either strategic or operational hypotheses. Second, using the
chronology of sentences within the Tweets and the type of hypothesis (i.e., operational
or strategic), the first information and operational hypothesis strings were appended to
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a dataset as a feature and label, respectively. Third, the prior hypothesis string was
added to the information string, if it was relevant to the next hypothesis, as well as any
subsequent intelligence, creating a new information string which was, again, appended
to the dataset as a feature and accompanied by its label, the next hypothesis. This pro-
cedure continued for all the hypotheses within a set of Tweets until there were no more
hypotheses to continue the process.

An example annotation of a set of Tweets that contained strategic and operational
hypotheses is presented in Figure 4.2. The set of Tweets pertains to the Wagner group’s
attempted coup d’état on 24th June 2023. The first two hypotheses (i.e. Hypo 1 and
Hypo 2) were operational ones that describe specific, short-term actions that were po-
tentially taken by the Russian state media and government to respond to the mutiny.
Both hypotheses were supported by items of information that contained data collected
from the operational environment, with the goal of providing support for both hypothe-
ses. The first hypothesis (i.e. Hypo 1) was supported by the assertion that Russian
media attempted to respond to the insurrection in three phases (i.e. Info 1). The second
hypothesis (i.e. Hypo 2) was supported by the first item of information (i.e. Info 1),
the first hypothesis (i.e. Hypo 1), and some discussion about how Vladimir Putin was
actively involved in the mutiny’s resolution which, as a result, was handled without any
killing. A further interesting point about the sentence containing the second hypothesis
(i.e., Hypo 2) is that it contains both a hypothesis and an item of information, which the
EDU segmentation approach was not able to capture. For instance, if the strings were
split into reconstructed propositions using ADU segmentation, then Hypo 2 could be
refined into the following:

• Info 2.1: Wagner Telegram channels have largely gone silent.

• Hypo 2: The Russian government has almost certainly intervened and taken
control of the Wagner group’s Telegram channels.

The ADU segmentation method above is capable of dealing with dislocations (Sec-
tion 2.10) within sentences. Moreover, reconstruction of assertions into propositional
form should reduce the number of enthymemes that language models would need to
reason with. However, investigating whether ADU segmentation would provide any
tangible increase in model performance is a task left for future work.

Finally, consider the third hypothesis (i.e. Hypo 3) in Figure 4.2 which, in this
particular case, is an example of a strategic hypothesis. Here, the projection strength
is strategic because maintaining an image of strength will most likely lead to desired
outcomes, such as domestic stability and legitimacy, deterrence against internal and
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external threats, and preservation of power and long-term control of Russia and the
Eastern world.

Russian state-approved media has responded to the 24th June 2023 Wagner

Group mutiny in three phases. Media outlets were almost certainly initially sur-

prised by the mutiny and were not prepared; Russian TV maintained its usual

schedule. After the insurrection was defused, Russian state media outlets sought

to ‘correct’ claims that security forces had been passive. Narratives promoted

the idea that President Vladimir Putin had triumphed by thwarting the insur-

rection, while avoiding bloodshed, and sought to unite the country behind the

president. Nearly a week later, the state started to play down the significance of

Wagner owner Yevgeny Prigozhin and the mutiny, while tarnishing his charac-

ter. Wagner Telegram channels have largely gone silent, almost certainly due to

state intervention. By contrast, Russian President Vladimir Putin has undertaken

unusually prominent public engagements. Vladimir Putin is almost certainly

aiming to project strength.

Info 1

Info 2

Info 3

Hypo 1

Hypo 2

Hypo 3

Info 1 Hypo 1
Supports

Info 1 + Hypo 1 + Info 2 Hypo 2
Supports

Info 1 + Hypo 1 + Info 2 + Hypo 2 + Info 3 Hypo 3
Supports

Information Hypotheses

Info 1 Hypo 1

Info 1 + Hypo 1 + Info 2 Hypo 2

Info 1 + Hypo 1 + Info 2 + Hypo 2 + Info 3 Hypo 3

. . . . . .

(a)

(b)

(c)

Figure 4.2: (a) A combined set of Tweets that contained an intelligence report with
two operational hypotheses, denoted Hypo 1 and Hypo 2, and astrategic hypothesis,
referred to as Hypo 3, (b) the identification of support for each hypothesis, and (c) the
instantiation of the annotation with the dataset.

4.2.2.2 Training, Validation, and Test Datasets

After completing the manual annotation process described in the previous subsection,
a total of 1,027 datapoints were identified, extracted, and instantiated within a dataset
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that contained information (features) that supported hypotheses (labels). The dataset
was partitioned for training (75%), validation (15%), and testing (10%). The data
was randomly shuffled using Numpy [97], a widely-used Python [232] library for data
science, using the same random seed3, so that fine-tuned models were trained and
validated, and standard and fine-tuned models were tested, using the same data.

In the subsection to follow, I introduce the standard and fine-tuned large language
models that were employed in this feasibility study and describe how those models
were prompted to generate hypotheses using the aforesaid dataset.

4.2.3 Large Language Models

Large language models are trained on vast swathes of data which renders them capa-
ble of understanding natural language corpora and generating human-like text. They do
this through a combination of transformer architectures and a self-attention mechanism,
first introduced by Vaswani et al. in [233]. One of the most well-known language mod-
els is OpenAI’s ChatGPT [158], which employs their Generative Pre-Trained Trans-
former (GPT) models behind the user interface. GPT models were trained by OpenAI
on data up to a specified date4. OpenAI provide an Application Programming Interface
(API) to enable researchers, industry specialists, and enthusiasts to use their models.
This API was employed to fine-tune the GPT 3.5 model for one, two, and three epochs,
as well as prompt the standard and fine-tuned models listed below:

• gpt-3.5-turbo-1106 (GPT 3.5), trained on data up to September 2021;

• gpt-3.5-turbo-1106, fine-tuned for 1 epoch (GPT 3.5, 1 epoch);

• gpt-3.5-turbo-1106, fine-tuned for 2 epochs (GPT 3.5, 2 epochs);

• gpt-3.5-turbo-1106, fine-tuned for 3 epochs (GPT 3.5, 3 epochs);

• gpt-4-0125-preview (GPT 4), trained on data up to December 2023;

• gpt-4o (GPT 4o), trained on data up to October 2023.

The temperature of the above models can be altered to change the creativity of
model outputs. The temperature ranges between zero and unity, and forces a given
model’s output to, respectively, be either deterministic or random. Throughout the
remainder of this chapter, model temperatures were equal to either 0.1, 0.4, 0.7 or 1

3https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.

html (Accessed on: 20.09.2024)
4https://platform.openai.com/docs/models (Accessed on : 17.10.2024)

https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html
https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html
https://platform.openai.com/docs/models
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because this study assessed the change in performance when the creativity of model
generations was altered.

In the next subsection, I describe the process by which prompts were generated and
input into the models, using a call to OpenAI’s API.

4.2.3.1 Prompt Engineering

The models introduced in the previous subsection were prompted to generate textual
outputs, which are referred to as completions or generations from now on. One of the
advantages of using large language models over conventional machine learning resides
in their ability to perform zero-shot and few-shot learning. Zero-shot learning allows
large language models to generate text without any prior examples, whereas with few-
shot learning, models are given a handful of examples to learn from before generating a
response [245, 119, 153]. Throughout the remainder of this chapter, both zero-shot and
few-shot learning are referred to as k-shot learning, where k is the number of examples
given to a model within a prompt.

Prompt Structure. The structure of each prompt was the same. Every prompt con-
tained an introduction and a number k of training examples before the model was tasked
with generating a given number of completions. The introduction provided each model
with: a description of its role (i.e., an AI assistant); the task at hand (i.e., generating
a hypothesis using the available information); a description of a hypothesis in accor-
dance with Pherson and Heuer Jr.’s definition, as presented in Chapter 1; and a request
for the model to generate a hypothesis. The introduction employed in each prompt is
displayed below:

‘You are an Artificial Intelligence assistant for an intelligence analyst who

is analysing the conflict between Russia and Ukraine. Your job is to gener-

ate a hypothesis using a set of information that you have received. In this

context, a hypothesis is a sentence, it is testable and falsifiable, it is based

on the information you received, and it predicts anticipated results clearly.

Please generate one hypothesis based on the inputted information.’

After the introduction, a number k of training examples were added to the prompt.
Two different types of example were added to prompts, namely: unbiased examples;
and biased examples. Starting with unbiased examples, each model was provided with
the same set of k randomly chosen items of information that supported k hypotheses.
The process by which those examples were sampled is made clear in Algorithm 4.1,
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and an example of an unbiased one-shot learning prompt produced by that algorithm is
presented in Appendix A.2.1.

Algorithm 4.1: Unbiased k-shot learning.
Input : A dataset D, of length M, containing hypotheses H (labels) supported by information I (features);

A number of examples k to train the model with;
A temperature T ;
An API to OpenAI’s GPT Model.

Output: An array of M×N models completions.
1 Seed← 0 // Specify the random seed in order to ensure the same training

examples are used for all target hypotheses

2 Completions← array(Completions,M×N) // Create an empty array to store the M×N

model completions

3 for i = 1 to M do
4 Prompt← Introduction // Append the introduction to the prompt

5 D̃ = remove(D, i) // Remove the i-th hypothesis Hi and its supporting item of

information Ii from the training dataset

6 if k > 0 then
7 for j = 1 to k do
8 (Ĩ, H̃)∼ D̃ // Sample the information Ĩ supporting a hypothesis H̃

without replacement from the training dataset

9 Prompt← Information : Ĩ
10 Prompt← Hypothesis : H̃

11 /* Append the sampled information Ĩ and hypothesis H̃ to the

prompt */

12 Prompt← Information : Ii ∈ D // Append the target information to the prompt

13 Prompt← Hypothesis : // Leave intentionally blank for the model to

complete

14 Completions[i]←Model(Prompt,N,T ) // Task the model to generate N hypotheses

using the prompt and temperature T, and append the result

15 return Completions

The second method of training example selection employed a biased approach to
reflect the way we, as humans, learn: it is far easier to learn how to do something when
provided with a similar example. This notion should be no different for large language
models that are required to learn how to generate plausible hypotheses within the con-
text of this study, and chapter. To identify the best training examples, each information
string was encoded in a fixed-size, sentence-level semantic vector embedding – using
Sentence Bidirectional Encoder Representations from Transformers (SBERT) [184],
which is discussed in more detail in Section 4.2.4.2 – and the cosine similarity between
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the target information, which supported the target hypothesis, and all other informa-
tion strings was computed. The k most semantically similar information strings, at
the sentence-level, were then included in the prompt as training examples. Algorithm
4.2 formally presents the procedure for biased training example selection. The outputs
from the algorithm, for the same target information and hypothesis as the unbiased
approach, where k also equalled unity, is displayed in Appendix A.2.2.

Algorithm 4.2: Biased k-shot learning using SBERT [184].
Input : A dataset D, of length M, containing hypotheses H (labels) supported by information I (features);

A number of examples k to train the model with;
A temperature T ;
An API to OpenAI’s GPT Model.

Output: An array of M×N models completions.
1 E = embed(I) // Calculate SBERT embeddings of the information

2 Completions← array(Completions,M×N) // Create an empty array to store the M×N

model completions

3 for i = 1 to M do
4 Prompt← Introduction // Append the introduction to the prompt

5 S← array(S, |I|−1) // Create an empty array, of length |I|−1, to store

similarity scores and indices

6 if k > 0 then
7 for j = 1 to M do
8 if i ̸= j then
9 S[ j]← [ cos sim(Ei,E j), j ] // Compute the cosine similarity between

the i-th and j-th information embedding, if and only if the

j-th embedding is not the target information, and append

the result and the index j to the similarity array S

10 S̃← top sim indices(S,k) // Save the indices of the k most similar

embeddings

11 forall j ∈ S̃ do
12 Prompt← Information : I j

13 Prompt← Hypothesis : H j

14 /* Append the j-th most similar item of information I j

supporting the hypothesis H j to the prompt */

15 Prompt← Information : Ii // Append the target information to the prompt

16 Prompt← Hypothesis : // Leave intentionally blank for the model to

complete

17 Completions[i]←Model(Prompt,N,T ) // Generate N hypotheses from the model

using the prompt and temperature T, and append the result

18 return Completions

After adding k training examples, the target information was added to the prompt,
as shown in Lines 12 and 15, and the model was tasked with generating ten hypotheses,
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in Lines 13 and 16, of Algorithms 4.1 and 4.2, respectively.

4.2.4 Evaluating Model Completions

In the following subsections, I describe the metrics employed in the evaluation of com-
pletions made by each model. The bespoke application for the large language models
proposed in this chapter meant there was not a wealth of data and techniques to evalu-
ate the completions output by each model. Generations from the models were assessed
on three criteria, specifically: the mean word-level semantic similarity between target
hypotheses and model completions; the average sentence-level semantic similarity be-
tween target hypotheses and generations; and the mean probability of hallucination in
a model’s outputs.

4.2.4.1 Word-Level Semantic Similarity

The word-level similarity between model completions and the target hypothesis was
computed using BERTScore [250], which is a task agnostic language generation met-
ric for a set of reference and prediction strings. The process by which BERTScore
computed the word-level semantic similarity goes as follows:

1. The words in each reference and prediction string are embedded using pre-
trained contextual word embeddings from transformers, such as Bidirectional
Encoder Representations from Transformers (BERT) [65] or the Robustly Op-
timsed BERT Pre-training Approach, more formally known as RoBERTa [138],
to name a couple. In this study, BERTScore employed RoBERTa with the hash
code: roberta-large L17 no-idf version=0.3.12(hug trans=4.37.2-

)-rescaled.

2. The pairwise cosine similarity between all the words within the prediction and
reference embeddings are computed.

3. Each predicted word embedding is then matched to the most similar reference
embedding, and vice versa, in order to compute precision, recall, and f1 scores.

4. The importance of rare words can then be incorporated into the aforementioned
scores using Inverse Document Frequency [205]. However, this task is optional
and was omitted from the BERTScores presented in this chapter.

5. Finally, the precision, recall, and f1 scores are linearly rescaled.
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For the purpose of obtaining results for this chapter, the predictions were the N

model completions and the reference was the target hypothesis in the dataset.

4.2.4.2 Sentence-Level Semantic Similarity

While BERTScore is capable of assessing the average similarity of word tokens across
a set of prediction and reference strings, it does not allow for semantic comparison at
the sentence-level. By combining BERT [65] and the Siamese network [197], SBERT
[184] was employed to quantify the semantic sentence similarity between the set of N

model completions and the target hypothesis. The procedure for computing sentence
embeddings using SBERT goes as follows. Reference and prediction strings are input
into BERT or RoBERTa, the outputs from either of those models are put through a
pooling operation to create fixed-sized sentence embeddings, and the Siamese network
is used to update weights so that the sentence embeddings are semantically meaningful
such that they can be compared using the cosine similarity. This study employed a pre-
trained sentence transformer, which used the aforementioned process, with the hash
code: all-MiniLM-L6-v25. The resulting cosine similarity scores between all target
hypotheses within the dataset and the N model completions were employed in order to
conduct a count that measured the number of other hypotheses in the dataset that were
closer to the model completions than the target hypothesis. The process by which this
count was computed is described in Algorithm 4.3.

4.2.4.3 Hallucination Detection

Determining whether large language models are capable of producing a diverse set of
plausible, MECE hypotheses is important. To generate such hypotheses, the tempera-
tures of models was increased, as discussed at the start of Section 4.2.3, so that model
completions were creative. However, increasing the diversity of model generations can
also cause hallucinations. Thus, understanding whether models were hallucinating was
vital, especially if such models are to be employed within intelligence settings. For
instance, it would be quite unhelpful and misleading to an analyst if a model were to
generate an implausible hypothesis because it contained a hallucination, and the intel-
ligence community may not want to employ such models in practice as a result.

To assess whether model completions contained hallucinations, I turned to Self-
CheckGPT with Natural Language Inference (NLI) [142], which combined another
large language model (DeBERTa-v3-large [100]) fine-tuned for textual entailment to

5The same hash code was used for identifying and including the k most similar, biased training examples
within a given prompt in Section 4.2.3.1.
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Algorithm 4.3: Compute the average number of hypotheses that were closer,
at the sentence-level, to the N model completions than the target hypothesis.

Input : An indexed list H containing M hypotheses from the dataset D;
An indexed list of hypotheses HN , of size N, generated by the model.

Output: A list of counts C representing the number of hypotheses that were closer to the N model completions
than the target hypothesis, for all hypotheses in D.

1 H̄← [H HN ] // Concatenate the list of hypotheses H from D and the list

hypotheses HN generated by the model

2 E← embed(H̄) // Compute the sentence-level embeddings using SBERT [184]

3 C← zeros(C,M) // Create an array of zeros to store the closeness counts for

each of the target hypotheses in D
4 for t = 1 to M ∈ H do
5 Closeness← array(Closeness,M−1) // Create an array of zeros to store the

cosine similarity scores of all the hypotheses within D, except the

target hypothesis

6 Target Sim = 0 // Set the average cosine similarity between the target

hypothesis and the N model completions to zero

7 for i = 1 to |E|−N do
8 /* Iterate through the indices of embeddings for hypotheses in the

list H */

9 if i ̸= t then
10 Other← zeros(Other,N) // Create an array of zeros to store the

cosine similarity scores between N model completions and the

i-th hypothesis embedding Ei.

11 for j = |E|−N to |E| do
12 /* Iterate through the indices of embeddings for hypotheses

output by the model */

13 Other[ j]← cos sim(Ei,E j) // Compute the cosine similarity between

the j-th model generation and the i-th hypothesis in D,
and append the result

14 Closeness[i]←mean(Other) // Compute the average cosine similarity

and append the result to the closeness array

15 else if i = t then
16 Target← array(Target,N)

17 for j = |E|−N to |E| do
18 Target← cos sim(Ei,E j) // Compute the cosine similarity between

the target and the N model completions

19 Target Sim←mean(Target) // Compute the average and save the result

20 Ct = 0 // Set the count of the number of other hypotheses that were

closer to the N model completions than the target to zero

21 for mean(Other) ∈Closeness do
22 if mean(Other)> Target Sim then
23 Ct =Ct +1 // If the mean cosine similarity between the model

completions and another hypothesis in D is greater than the

target’s cosine similarity, add unity to the count

24 C[t]←Ct // Append the counts for the t-th hypothesis

25 return C
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predict the probability of a contradiction between a reference string and a set of predic-
tions. SelfCheckGPT is a robust, zero-resource, and black-box approach to hallucina-
tion detection. The procedure normally identifies contradictions between a completion,
generated using a more-deterministic temperature, and a set of N generations that used
a higher and more creative temperature. However, for the purposes of this study, the
process was adjusted and the set of target hypotheses were employed as the determin-

istic samples. The adapted method for hallucination detection using SelfCheckGPT for
one target hypothesis went as follows:

1. Identify and store the target hypothesis ti;

2. Prompt the model and sample N hypotheses Sn, where n ∈ {1, . . . ,N}, using a
temperature of either 0.1, 0.4, 0.7, or 1;

3. For each of the hypotheses Sn sampled from the model, compute the probability
of a contradiction between the target hypothesis ti and Sn, using the logits as-
sociated with entailment and contradiction output by the large language model,
DeBERTa-v3-large, such that

P(contradict|ti,Sn) =
exp(zc)

exp(zc)+ exp(ze)
(4.1)

where ze and zc are the logits of entailment and contradiction, respectively. Prob-
abilities closer to unity implied that a contradiction was more likely, and vice
versa for entailment.

4. The hallucination score was computed as the average of the probability of a
contradiction between the target hypothesis and N model completions, where

SNLI(ti) =
1
N

N

∑
n=1

P(contradict|ti,Sn). (4.2)

4.3 Results

In this section, results from experiments which employed the models listed in Section
4.2.3 and the test dataset in Section 4.2.2.2 are presented. The test dataset contained
a total of 103 samples. Each model was tasked with the generation of ten hypotheses,
where N = 10, using the same prompts. The reason for this is simple. Imagine that
two ASAs were provided with the same items of information and both were asked
to generate three hypotheses. While those analysts might generate hypotheses that
were semantically similar at the sentence-level, it is unlikely that they would generate
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exactly the same hypotheses. Thus, tasking a large language model with the generation
one hypothesis and expecting it to be the same as the target hypothesis is unreasonable.
So, each large language model was tasked with generating ten hypotheses under the
assumption that as the models made more completions, there was a higher chance that
at least one of the generations would be relatively close to the target.

4.3.1 Word-Level Similarity

The mean BERTScore f1-scores, plus or minus the Standard Deviation (SD), are pre-
sented in Table 4.1. Looking to both the model and prompt-type averages, generally
speaking, as the temperature was increased, the f1-score decreased; thus, increased
model temperatures came at the expense of word-level similarity. The highest model
and prompt-type average was observed for the GPT 3.5, 2 epochs model and bi-
ased ten-shot learning prompts, respectively, where both had a temperature of 0.1. The
highest average f1-score was produced by the GPT 3.5, 3 epochs model which used
a temperature of, again, 0.1 and five-shot biased learning. Moreover, as models were
provided with more training examples, where k was greater than or equal to one, the
f1-score increased, which shows that models were able to learn terminology, at the
word-level, that was similar to what an analyst might say. Finally, prompts that con-
tained biased training examples obtained higher average f1-scores when compared to
their unbiased counterparts, which confirmed that biasing training examples improved
the language models’ ability to generate words that were similar to the intended output.

4.3.2 Sentence-Level Similarity

The average number of hypotheses, plus or minus the Standard Error (SE), in the test
dataset which were semantically closer, at the sentence-level, to the ten model comple-
tions than the target hypotheses are presented in Table 4.2. Zero-shot learning consid-
erably outperformed all other prompt-types across all models and temperatures, where
the GPT 3.5, 2 epochs model, prompted using zero-shot learning and a tempera-
ture of 0.4, had the lowest average. The fine-tuned models were expected to, and did,
outperform all other models with regards to the closeness of their generations to tar-
get hypotheses, as per Table 4.2. While this result is interesting, it was anticipated
because all fine-tuned models were trained and validated on 75% and 15%, respec-
tively, of the dataset that contained information and hypotheses. However, the standard
GPT 3.5 model produced completions that were closer to target hypotheses than GPT

4 and 4o’s outputs, which was unexpected. Both GPT 4 and 4o were trained by Ope-
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nAI using data which may have contained information about the ongoing conflagration
between Russia and Ukraine, whereas the standard GPT 3.5 model was not. Further-
more, biasing the k-shot training examples, using Algorithm 4.2, did seem to increase
the closeness of model completions to target hypotheses, on average. However, this
result is not so significant because the closeness results produced by zero-shot learning
prompts were much better than all other prompt-types.

4.3.3 Model Hallucinations

The mean probability of a contradiction between a target hypothesis ti and ten model
completions Sn, plus or minus the SD, for all the hypotheses in the test dataset are pre-
sented in Table 4.3. The lowest prompt-type and model means were seen in zero-shot
learning prompts and the GPT 4 model, respectively. However, the completions from
all models probably possessed hallucinations because the average probability of a hal-
lucination was greater than 50% for all models, prompt-types, and temperatures. The
prompt-type and model averages with the lowest probability of a hallucination were
noted in models which employed a temperature of unity. This result is interesting be-
cause one would expect completions generated using a lower temperature to contain
fewer hallucinations. However, this was not the case. Upon observation of the comple-
tions from models that employed a temperature of unity and 0.1, the reason for this be-
comes slightly clearer. Completions generated using a temperature of 0.1 tended to be
almost the same, if not identical. Whereas, all the generations that used a temperature
of unity were different. This meant that if a model with a lower temperature generated
a hypothesis that contained hallucinations, then all the other completions highly likely
contained the same hallucination also. On the contrary, when a model with a higher
temperature hallucinated, that model would almost never generate the same hypothe-
sis in the following completions; thus, providing those models with the opportunity to
produce novel hypotheses which did not contain hallucinations. An example of this is
provided in Appendix A.3 for completions that were generated using a temperature of
0.1 and unity. The examples used the unbiased and biased one-shot learning prompts
with the same target hypothesis, respectively, displayed in Appendices A.2.1 and A.2.2,
which I described earlier in Section 4.2.3.1.
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4.4 Discussion

The results from experiments that tested the feasibility of using a number of state-
of-the-art large language models for hypothesis generation within intelligence settings
were inconclusive. While large language models were able to generate hypotheses
using a set of information and k-shot learning examples, the findings do not confirm
whether they have the potential to, as Snidaro put it in [204], “revolutionise” the task
of hypothesis generation, for a number of reasons. The examined models were able
to learn the relevant terminology employed by intelligence analysts, and increasing the
temperature of model outputs increased the range of hypotheses observed. Closeness
of model completions was not increased by increasing the number of k-shot learning
examples. The closeness results for completions from zero-shot learning performed
better than all other prompt-types, which affirms the work of Liu, Neubig, and Andreas
in [136], where they posit that language models perform better abductive reasoning
when they are provided with inference instructions, instead of few-shot learning exam-
ples. Increasing model temperature had no tangible impact on the number of potential
model hallucinations as the average probability that a set of model completions con-
tained a hallucination was greater than 50%, for all models, temperatures, and k-shot
learning approaches. When model temperatures were at their lowest (i.e., 0.1), model
generations were not diverse and many of the strings output by models were the same,
which would be, at best, unhelpful to the analyst. The models that were fine-tuned for
one, two, and three epochs produced completions closest to target hypotheses at the
sentence-level, using zero-shot learning prompts. This suggests that fine-tuned mod-
els are better than the most recent, standard, and state-of-the-art models for hypothesis
generation. Whether the completions from the GPT 4 and 4o models, fine-tuned for
one, two, and three epochs, would be closer to target hypotheses than the outputs from
the fine-tuned GPT 3.5 models is an unanswered question left for future work.

The experiments in this chapter demonstrate that large language models can be
employed for hypothesis generation within the context of the conflict between Russia
and Ukraine. However, the models should be tested in different settings to understand
whether they can produce a diverse set of good hypotheses for a variety of novel sce-
narios. Model generations were not examined to see whether they were good hypothe-
ses, in accordance with Pherson and Heuer Jr.’s definition [173]. Moreover, this study
did not assess whether completions contained the qualitative probabilistic judgements,
such as those found in the Probability (or Uncertainty) Yardstick, introduced in Section
2.1.4, which are required to be included within finished intelligence products.

As the intelligence community moves towards utilising AI in the future, there is
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a growing need to understand whether large language models could be employed for
different tasks within the analysis stage of the Intelligence Cycle. In this chapter, I
have shown that hypothesis generation, a fundamental task within the Cycle, can be
completed by large language models. However, the extent to which these tools pro-
duce good hypotheses is questionable. There are number of issues with state-of-the-art
large language models which must be addressed before they are used operationally for
intelligence analyses. Starting with the first and most fundamental problem, large lan-
guage models are trained on an exorbitant amount of data and they perform well at
completing tasks that they previously observed during training. However, hypothesis
generation, within intelligence contexts, is juxtaposed to that notion of training. Ana-
lysts are required to conduct abductive reasoning, a task which large language models
are not proficient at [136], using the available information and evidence, as well as their
assumptions, where the amount of data could vary from a lot to a little. The scenario
being assessed by the analyst may be novel such that there are no previous examples
to help guide an analyst’s forecasts. While the standard GPT 3.5 model, which was
not trained on any data pertaining to the current conflict between Russia and Ukraine,
performed relatively well across all experiments, this does not confirm whether other
language models will generalise to other, more nuanced and novel situations that they
have not been trained on.

The second issue pertains to attention dilution. The results show that as the models
were provided with more training examples, the models’ completions and target hy-
potheses became increasingly less semantically similar, at the sentence-level. For large
language models to provide real benefit to the intelligence community in the future, the
analyst should be able to provide a given model with as much context as they believe
is necessary to generate hypotheses, without impacting model performance.

Third, producing models that can robustly generate diverse hypotheses without hal-
lucinating is a challenge, but a necessary task for intelligence analysis in the future.
Although the model temperature did not, roughly speaking, impact the probability of a
hallucination, models of the future should focus on decreasing said probability across
all model generations to ensure that large language models can be reliably used for
MECE hypothesis generation.

Fourth, models were tasked with generating both operational and strategic hypothe-
ses, which may have decreased model performance. Whether these models can differ-
entiate between those two types of hypotheses and generate them, if asked to, should
be studied and understood in the future.

Fifth, the effects of the granularity of segmentation on model performance was
not assessed in this chapter. In Section 2.3.3.1, the distinction between an EDU and
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ADU was made clear. The method for segmentation in this chapter employed an EDU
approach. However, the example in Figure 4.2 and brief discussion in Section 4.2.2.1
demonstrates how dislocations can be present within the data such that a hypothesis is
either embedded within or split between the propositional content in a clause containing
information. As I discussed in Section 4.2.2.1, segmenting the data into ADUs and
reconstructing any missing or implicit material, such as resolving anaphoric references
and dislocations, might increase language model performance. However, this is a task
that is left for future work.

Finally, given the nature of intelligence analysis, much of the information available
to an analyst is classified and not openly accessible. Fine-tuning the models employed
in this chapter, using both classified and unclassified data, might increase their perfor-
mance. However, for obvious reasons, this is a task that the intelligence community
would need to undertake as future work.

4.5 Summary and Future Work

In this chapter, a study was conducted which measured the feasibility of leveraging
large language models for hypothesis generation with intelligence settings. Tweets
from the X, formerly Twitter, account of the United Kingdom’s Ministry of Defence,
were annotated and instantiated within a dataset that contained hypotheses supported
by information. The Tweets contained unclassified intelligence reports. A number of
state-of-the-art large language models were fine-tuned and prompted using those data.
The results from the feasibility study were inconclusive. While large language models
can generate hypotheses using a set of information as context within a prompt, whether
or not the hypotheses generated were good, in terms of Pherson and Heuer Jr.’s def-
inition [173], is questionable. Prompts that employed a zero-shot learning approach
outperformed all others, producing completions that were the closest to the intended
target hypothesis. All the results presented contained hallucinations so, again, there
was no guarantee that the hypotheses generated by models were plausible. Moreover,
the problem of attention dilution was noted when more training examples were in-
cluded in prompts. Although large language models are indeed very popular and there
is much ongoing research to study their potential use-cases, this study shows that the
technology, in its current state, cannot be employed for reliable hypothesis generation
within intelligence settings. Hypothesis generation requires the analyst to reason ab-
ductively, a task language models struggle with.

The application of large language models proposed in this chapter is novel and
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quite niche. As such, there are many ideas for future work. First, the curated dataset
employed in the fine-tuning and prompting of language models could be partitioned
into two datasets, containing information supporting either operational or strategic hy-
potheses, which would enable us to understand whether model performance increases
when the definition of a hypothesis is stricter. Second, as I described in Section 4.2.2.1,
hypotheses generated and evaluated at the tactical level should aid in the evaluation of
operational hypotheses, and the set of evaluated operational hypotheses should inform
the probability of strategic hypotheses too. The relationship between evaluated tactical,
operational, and strategic hypotheses could form a tree structure. Understanding and
formalising this relationship should help intelligence analysts evaluate hypotheses in
the future. Third, the quality of model completions should be assessed to understand
whether: the hypotheses generated are good, according to Pherson and Heuer Jr.’s defi-
nition in Chapter 1; and model generations contain qualitative probability judgements,
as per the Probability (or Uncertainty) Yardstick in Section 2.1. Moreover, the pre-
cision of those probabilistic judgements should be quantified to understand whether
they are in agreement with an analyst’s judgement. Fourth, as language models are
not proficient in abductive reasoning, using a set of inference instructions, instead of
few-shot learning examples, similar to the proposal discussed by Liu, Neubig, and An-
dreas in [136], should be considered. Finally, future research could investigate whether
large language models can conduct hypothesis generation using analytical techniques,
such as Quadrant Hypothesis Generation that was described in Section 2.1.5.1, where
the goal would be to prompt a given model to identify the two, key driving factors
pertaining to a situation, to name one example.

Up until now, this thesis has considered the use of argumentation schemes and
large language models to represent and generate hypotheses, respectively. In Part II,
two techniques are proposed that focus on providing decision- and reasoning-support
for ASAs when conducting hypothesis evaluation tasks.
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In this part, I present two techniques for aiding hypothesis evaluation within the
analysis stage of the Intelligence Cycle. In Chapter 5, I present the first approach
which combines probabilistic argumentation frameworks [133] with Bayes’ theorem
[18] in order to condition an intelligence analyst’s probabilistic judgements – i.e., their
assessments about the prior probabilities of hypotheses, information, evidence, and as-
sumptions – on a semantically evaluated set of arguments which feature within their
analysis. In Chapter 6, I propose a second method which combines Dung’s abstract
argumentation frameworks [70] with probability and information theory to emulate the
task of sensitivity analysis, which is usually employed in step seven of the ACH, as I
discussed in Section 2.1.5.2. Recall that the methods in Part I were to be employed after
the ASA had concluded their own analysis. The techniques proposed within this part
are also to be used after the conclusion of an analysis, in agreement with Zlotnick’s sug-
gestion in [251], which was previously discussed in Section 2.4.2. Both the approaches
in Chapters 5 and 6 should provide benefit to analysts by, respectively, computationally
refining analysts’ prior probabilistic judgements in light of a set of semantically eval-
uated arguments and quantifying diagnostic arguments, acting to ensure that analysts’
conclusions are reasonable, rational, and based upon all the available data.

A real-world example, called Operation Fortitude-South, was employed to test
quality and benefits of both the algorithms proposed in this part of the thesis. Operation
Fortitude was an Allied deception operation in World War Two conducted prior, dur-
ing, and after the Normandy landings and invasion of Europe, to counter the German
offensive. As Donovan puts it

‘Fortitude consisted of two primary operations. Fortitude-North was de-

signed to convince the Germans that the Allied invasion in 1944 would

come through Norway and Sweden vice France. Fortitude-South was de-

veloped to convince Hitler and his staff that the primary invasion site in

France would be Pas de Calais and other potential invasion sites, such as

Normandy, were only diversions.’ [66, p. 5]

The overall objective of such an operation was to force the Axis’ attention away from
Normandy to enable a successful Allied invasion, while also delaying German rein-
forcements to the area. In [66, p. 13-18], Donovan provides a comprehensive descrip-
tion of the plans, goals, and events that occurred as result of Operation Fortitude-South.

I now briefly introduce the scenario, as well as the manual argument mining process
undertaken to annotate the data, within this introduction to Part II. The annotated data
from the Operation Fortitude-South scenario was captured within the AIF [11] repre-
sentation and then mapped to an ASPIC+ argumentation theory [177, 150] and then to
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a Dung argument system [70], as discussed in Section 2.3.2.3, in order to enable the
evaluation of the proposed arguments.

As discussed in Section 2.4.3, Alan Knox, at the United Kingdom’s Dstl, produced
the first proposal which studied the Operation Fortitude-South example using both the
ACH and argumentation schemes. The work on this is presented on Dstl’s eleatics web-
site6 [63]. All the annotated data pertaining to that scenario was taken from their web-
site and employed in experiments throughout the rest of this part of the thesis. While
applying argumentation schemes to the ACH is not a new concept and in [152], Mu-
rukannaiah et al.’s proposed combination of the techniques has been shown to provide
benefit to analysts, as discussed in Section 2.4.3, the combination of the techniques had
only been applied to fictitious examples prior to Knox’s work on Operation Fortitude-
South. Knox again demonstrates that the ACH can be combined with argumentation
schemes for real-world scenarios.

The manual annotation of argument data from the Operation Fortitude-South sce-
nario, stored in an AIF argument graph and translated to an ASPIC+ argumentation
theory and then to a Dung argumentation framework, is one contribution of this thesis.
The methodology for the manual argumentation mining process and consequent frame-
work instantiation is documented below. The research presented in this introduction to
Part II is an extension of Dstl’s work on the same example. A full description of Dstl’s
contribution and how it relates to the work presented in this thesis has been included in
Appendix B.1.

As previously discussed in Section 2.4.3, Zografistou et al. show in [253] that ar-
gument data stored within the AIF can be converted to an ACH matrix, as long as the
annotator chooses which propositions contain hypotheses. The work presented in this
part of the thesis demonstrates that the diagnosticity matrix, created during the ACH,
can also be mapped to the AIF to enable computational reasoners to evaluate the ac-
ceptability of arguments present within an intelligence analysis. The methodology of
the ACH process is such that analysts are required to list all the plausible and MECE
hypotheses, as well as all the information, evidence, and assumptions. Therefore, all
the data necessary to instantiate an argumentation framework is already present within
the diagnosticity matrix. Moreover, one could argue that this matrix is inherently ar-
gumentative because analysts must decide which row entries provide support for or
attack hypotheses, and it is this reasoning that I have elicited from the ACH matrices
proposed by Knox on Dstl’s eleatics website.

The remainder of this introduction to Part II describes the extension to Knox’s
6https://Dstl.github.io/eleatics/argumentation/fortitude/ (Accessed on: 10.02.2023)

https://Dstl.github.io/eleatics/argumentation/fortitude/


113

work, which resulted in an argumentation framework to enable the testing and evalua-
tion of the two techniques proposed within Chapters 5 and 6 of this thesis.

Dstl’s Contribution to the Operation Fortitude-South Example. On Dstl’s eleat-

ics website, Knox demonstrates how the ACH can be combined with argumentation
schemes using Operation Fortitude-South as an example. An important point to note
is that the analysis is conducted from the perspective of the German forces and what
the Allied commanders believed the Axis command would have concluded as the most
likely invasion site. The Allied nations would have conducted their own analysis about
what the Germans may or may not have believed at the time. The point of this anal-
ysis was to understand whether the ACH could in fact be employed in an analysis
about what others should believe, given the available information, using a deception
operation as an example. Knox loosely follows the ACH process, which I described
in Section 2.1.5.2, and starts by identifying the set of MECE hypotheses, which were
reduced to a set of plausible ones that were found to be:

• Pas de Calais: The main invasion will land in Pas de Calais.

• Normandy: The main invasion will land in Normandy.

An interesting point to note here is that the above hypotheses are strategic ones.
Recall from Section 4.2.2.1, the distinction between strategic, operational, and tactical
hypotheses. Now, imagine that the Allies had two different ways to arrive at Normandy.
Both of the ways to get to Normandy should sensibly be hypotheses. However, the
distinct two routes are operational hypotheses as they operationally describe how the
Allies might go about achieving their strategic goal, which was to invade mainland
Europe through Normandy.

Returning back to the work completed by Knox, he then lists the significant and rel-
evant information, evidence, and assumptions, which are presented in Appendix B.2.
Next, he prepare an initial diagnosticity matrix, presented in Table B.1, containing the
two hypotheses and the information, evidence, and assumptions, and populate each cell
with consistency scores based upon whether the row entries were inconsistent or other-
wise with each hypothesis. An important point to note here is that Knox assumed that
each cell within an ACH matrix was an application of one of Walton’s argumentation
schemes7. Then, he condensed the initial matrix and removed superfluous row entries,
resulting in a refined ACH matrix, which is presented in Table 4.4 and B.4. In both

7https://dstl.github.io/eleatics/argumentation/fortitude/schemes.xhtml (Accessed
on: 10.02.2023)

https://dstl.github.io/eleatics/argumentation/fortitude/schemes.xhtml
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the initial and refined diagnosticity matrices, the most likely hypothesis from the Axis’
perspective was deemed to be the Pas de Calais hypothesis because it was the least in-
consistent with the available row entries. Knox also conducted sensitivity analysis and
concluded that ORBAT (see Appendix B.2 for a definition of this item) was the most
diagnostic item of information. ORBAT is a row entry which accrued other items and
whether ORBAT provided support for or was in conflict with either of the hypotheses
was determined by conducting another ACH, which I describe in more detail in Section
B.1.3. A more detailed description of Dstl’s contribution, how the work presented in
this thesis extends the work by Knox at Dstl, and the analysis pertaining to ORBAT is
provided in Appendix B.1.

Table 4.4: The refined ACH matrix for Operation Fortitude-South, where “C” and “I”
denote row headers that are consistent and inconsistent with the hypotheses (column
headers), respectively.

Information, Evidence, and Assumptions
Hypotheses

Normandy Pas de Calais

PORT I C
EXPANSION C I

STRONGPOINT C I
SPIES I C

SIGINT I C
SHORTEST I C
AIRPLAN I C

ORBAT I C

The Manual Annotation Process. While there is much documented on the Oper-
ation Fortitude-South scenario, the only data employed within the analysis presented
in this thesis was data collected from Dstl’s eleatics website. The manual argument
mining process, which I discussed in Section 2.3.3.1, was employed in the annotation
of the Operation Fortitude-South dataset. All the propositions discovered within the
dataset were taken from the eleatics website and put through the entirity of the manual
argument mining process (i.e., text segmentation, argument / non-argument classifica-
tion, simple inference and conflict structure, and refined structure instantiation), culmi-
nating in a set of arguments, instantiated using Walton’s argumentation schemes, for
each hypothesis and item of information, evidence, and assumption found within the
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dataset. While Knox assumed that each cell within an ACH matrix was an instantia-
tion of one of Walton’s argumentation schemes, this thesis extends the work on Dstl’s
eleatics website by relaxing this constraint, in order to allow cells within a matrix to be
the application of a varying number of sequentially linked arguments that provide sup-
port for a hypothesis or its negation. I now discuss how the two, main hypotheses and
the row entries in the refined ACH matrix were annotated using OVA+ [108], which
allowed the argument data to be stored in the AIF.

Hypotheses. Similar to the notion first proposed by Toniolo et al. in [216] and the
scheme proposed within this thesis for the representation of hypotheses in Chapter 3,
hypotheses within the analysis of Operation Fortitude-South were represented using
Walton’s original argument from cause to effect [236], instead of using the scheme
proposed in Chapter 3. However, an interesting avenue for future work might be to
employ the scheme in Chapter 3 as an argumentation-based summary of the reasoning
presented in the diagnosticity matrix after the conclusion of an ACH in order to demon-
strate the scheme’s usefulness. The hypotheses are presented in Figure 4.3. To make
the reasoning about hypotheses explicit, the propositions instantiated within arguments
about hypotheses were: the hypothesis; the negation of the other hypothesis; and a
causal generalisation – for both the Normandy and Pas de Calais hypotheses. The mu-
tual exclusivity of hypotheses was modelled by the causal generalisation which meant
that if one of the hypotheses were found to be true (false), then the other one would be
false (true). For example, if the Normandy hypothesis was true, then the Pas de Calais

would be false. Attacks between hypotheses were instantiated as follows. First, recall
from Section 2.2.1.1 that WCQ3 in Walton’s argument from cause to effect [236] asks
whether there are any other causal generalisations that interfere with the production of
an effect. Thus, symmetric attacks were instantiated between the causal generalisations
for arguments containing opposing hypotheses with alternate generalisations. Both the
causal propositions were instantiated as ordinary premises within the ASPIC+ frame-
work [177, 150], which allows those mutual attacks to be represented also within an
abstract argumentation framework, after translating from the AIF to ASPIC+ then to a
Dung-style argument system. Symmetric attacks were also identified between each of
the hypotheses due to the conflicting outcomes (i.e., the Allied forces were planning
to invade either Normandy or Pas de Calais). Finally, symmetric attacks were also
instantiated between hypotheses and their complements because a hypothesis and its
negation should not be included in the same extension or labelling found after semantic
evaluation.
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Generally, if the main
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land in Pas de Calais,
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Figure 4.3: The two, main hypotheses from the Operation Fortitude-South example
instantiated within Walton’s argument from cause to effect [236]. The diagram in this
figure was adapted from a screenshot of the analysis in OVA+ [108].

Information, Evidence, and Assumptions. Each cell within the ACH matrix was
assumed to be comprised of a varying number of sequentially linked arguments con-
taining information, evidence, or assumptions that either provided support for a hy-
pothesis or its negation. Row entries that were consistent with a hypothesis in the ACH
matrix were instantiated as premises within arguments that culminated in direct sup-
port for a hypothesis (i.e., the conclusion of argument for a hypothesis), whereas row
entries which were inconsistent with a hypothesis provided support for the hypothe-
sis’ negation; thus, indirectly attacking the hypothesis due to the method of symmetric
attack instantiation discussed earlier. For example, consider the item of evidence de-
noted as PORT, in Table B.1, which is inconsistent (i.e., I) and consistent (i.e., C) with
the Normandy and Pas de Calais hypotheses, respectively, because Normandy did not
have a deep water port in 1944 but Pas de Calais did. Now look to Figure 4.4. The
reasoning underpinning the use of ports and military practice pertaining to invasions
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must first be made explicit through the instantiation of Walton’s argument from estab-
lished rule [238]. The conclusion of the argument from established rule (i.e., the allied

military invasion must use a major port) was employed as a premise, along with do-
main knowledge about whether Normandy or Pas de Calais had deep water ports at the
time, within Walton’s practical reasoning scheme [241], to conclude that the invasion
should land in Pas de Calais, not Normandy. Relaxing the assumption that each cell
was the application of one of Walton’s argumentation schemes enabled a stronger and
more logical inference from the set of premises to the conclusion for the Pas de Calais

hypothesis in the example shown in Figure 4.4.

Practical Reasoning Practical Reasoning

The main invasion should
not land in Normandy

The main invasion should
land in Pas de Calais

The Allied military invasion
must use a major port

Normandy does not
currently have a major port

Pas de Calais currently
has a major port

Established Rule

If carrying out types of actions
including the use of a major port
for invasion is the established rule

for the Allied military (unless
the case is an exception), then
the Allied military must make

use of a major port for invasion

Carrying out types of
actions including making

use of a major port is the
established rule for the
Allied military invasion

Figure 4.4: An instantiation of the reasoning involved in the evidence denoted PORT
using Walton’s argument from established rule [238] and practical reasoning scheme
[241]. The diagram in this figure was adapted from a screenshot of the analysis in
OVA+ [108].
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From the ACH to AIF. While there were two ACH matrices presented by Knox
on Dstl’s eleatics website, namely the initial8 and refined9 ACH matrices, only the
latter was employed in the testing of the approaches proposed in Chapters 5 and 6.
The refined ACH matrix is presented in Table B.4 in Appendix B.1.5. The refined
ACH matrix was converted to structured argument data using the same methodology
as described earlier for each row entry within the matrix, under the assumption that
the reasoning about each cell could be modelled using a varying number of sequential
instantiations of Walton’s schemes. The AIF argument graph, annotated using OVA+,
for the refined ACH matrix is presented in Figure B.1 in Appendix B.3. The AIF graph
was then translated to an ASPIC+ argumentation theory and then to Dung’s seminal
framework for evaluation. The arguments and sub-arguments instantiated using the
ASPIC+ framework are presented in Appendix B.4. The Dung argumentation graph
instantiated, using the translation procedure described in Section 2.3.2.3, is presented
in Figure B.2 in Appendix B.5.

8https://dstl.github.io/eleatics/argumentation/fortitude/matrix-at-3.xhtml (Ac-
cessed on: 10.02.2023)

9https://dstl.github.io/eleatics/argumentation/fortitude/matrix-at-4.xhtml (Ac-
cessed on: 10.02.2023)

https://dstl.github.io/eleatics/argumentation/fortitude/matrix-at-3.xhtml
https://dstl.github.io/eleatics/argumentation/fortitude/matrix-at-4.xhtml


Chapter 5

On Human-Machine Bayesian
Hypothesis Evaluation

In this chapter, I propose a definition for a hypothesis and a definition of information in
terms of the ASPIC+ framework, which I introduced in Section 2.3.2.1. I then combine
those definitions with probabilistic argumentation frameworks [133], Bayes’ theorem,
and an analyst’s prior beliefs about the probability of hypotheses and information – in
the form of a human-machine team – in order to refine a human agent’s probabilistic
judgements using a set of semantically evaluated arguments. I provide a series of ab-
stract examples that draw upon, what is assumed to be, a typical intelligence scenario
to show how the proposed algorithms work in practice. I then test the approach using
the Operation Fortitude-South argumentation framework, which was mapped from the
ACH, to AIF, to an ASPIC+ argumentation theory, and then to a Dung argument sys-
tem, as described in the introduction to Part II. The chapter concludes with a summary
of the contribution and some discussion pertaining to avenues for future work.

5.1 Introduction

Intelligence analysis includes many different tasks, such as identifying, processing,
and making sense of past and present data in order to provide forecasts on future de-
velopments for stakeholders and decision makers. Analysts are tasked with generating
and evaluating hypotheses using the information available to them during the analy-

sis phase of the Intelligence Cycle, as described in Section 2.1.1. The output from
their analysis is an intelligence report (or finished intelligence product) which usually

119
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contains a set of probabilities pertaining to the likelihood of each hypothesis, as well
as any diagnostic information, which is then shared with stakeholders in the dissem-

ination stage of the Cycle. Although analysts employ a variety of techniques during
analysis, evaluative tools, such as the ACH, are not without their deficiencies. For ex-
ample, as described in Section 2.4.3, in [152], Murukannaiah et al. show how the use
of the ACH alone does not necessarily mean that analysts are reasoning with multiple
items of information to evaluate hypotheses. In fact, the ACH forces analysts to con-
sider the consistency or otherwise of individual items of information due to the matrix
which analysts are required to instantiate during evaluation. As I discussed in Section
2.1.5.2, an analyst may decide that certain row entries within the ACH are not appli-
cable to a hypothesis when considered in isolation. However, those same items could
conflict with, or provide support for, a hypothesis when they are combined. As such,
analysts should possess tools which can reason with all the information, evidence, and
assumptions that feature in their analysis.

While the ACH was intended to minimise confirmation bias, the probabilities of
the hypotheses reported to stakeholders and decision makers will inevitably contain a
human agent’s prior beliefs about a particular domain, judgement errors, and cogni-
tive biases. The number of errors and biases included in those probability judgements
could vary from analyst to analyst because they come from, for example, different
backgrounds and hold different societal views. This means that two analysts evaluating
the same set of hypotheses using, say, identical row entries from the ACH may arrive at
different probabilistic assessments. The benefits of utilising a computational agent that
can assess the acceptability of data points, and condition the probabilities of hypotheses
on the acceptability of arguments within their analysis, are two-fold. First, employing
a computational agent to conduct the reasoning about hypotheses in the light available
data will ensure that analyses are repeatable, consistent, and coherent amongst different
analysts. Second, utilising the computational power of an automated reasoner means
that the probabilistic judgements made by human agents about hypotheses can include
all the information, thus providing a more holistic evaluation.

As I discussed in Section 2.4.2, previous work by Zlotnick in [251] and Edwards
et al. in [74] argued that Bayes’ theorem [18] is capable of revising probabilistic esti-
mates and that the technique should be employed within intelligence analyses, after the
analysis phase of the Intelligence Cycle has concluded. Further support for this argu-
ment was provided by both Zlotnick in [252] and Fisk in [79], where Bayes’ theorem
was employed for the revision of estimates in real-world examples, namely the events
leading to the 1941 Pearl Harbour attacks and the border dispute between China and
the USSR, respectively.
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To this end, this chapter proposes a technique which is able to refine the probabilis-
tic judgements made by analysts using the acceptability of arguments found within the
ACH and instantiated within probabilistic argumentation frameworks. The proposed
algorithms are not intended to replace an analyst’s domain expertise and skill during
analyses. The technique presented is to be employed after the analyst has concluded
their analysis (step seven of the ACH) and before the dissemination of their findings
(step eight of the ACH), acting similar to a quality assurance check conducted in light
of the results from semantic evaluation of arguments within the evaluated ACH matrix;
thus, providing benefit to the intelligence community.

The contribution made in this chapter can be divided into two parts:

• Pherson and Heuer Jr.’s definition of a hypothesis in [173] is employed to define,
for the first time, a hypothesis in terms of structured argumentation, specifically
the ASPIC+ framework.

• A novel set of algorithms are proposed, which build upon the first contribution,
in order to condition a human agent’s tentatively-held probabilistic judgements
about hypotheses, using the output from semantic evaluation of probabilistic ar-
gumentation frameworks [133] and Bayes’ theorem [18], in a similar fashion to
the proposals made by Zlotnick, Fisk, and Edwards et al., which were mentioned
earlier in this section and in Section 2.4.2. The method presented describes how
to combine the knowledge of a human analyst with the rationality of a compu-
tational agent, in a human-machine team, to evaluate hypotheses. The algorithm
should benefit intelligence analysts by providing more holistic estimates of the
likelihoods of hypotheses that are based upon the admissibility of the informa-
tion.

5.2 Preliminaries

In this section, I introduce the relevant prerequisites necessary for understanding the
proposed algorithms presented in Section 5.3.7.

5.2.1 Abstract Argumentation Frameworks

Recall the definition of abstract argumentation frameworks from Section 2.3.1. A Dung
argument graph is a pair (A ,R) that contains a set of arguments A and a binary
attack relation R ⊆A ×A . We say that a1 attacks a2 if and only if (a1,a2) ∈R and
a1,a2 ∈A . The semantics of such frameworks are operations which group admissible
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sets of arguments that possess two characteristics: conflict-freeness; and acceptability,
as respectively stated in Definitions 2.2 and 2.3 in Section 2.3.1.

While the literature characterises the semantics into either extension- or labelling-
based semantics, both approaches employ different methods to realise the same end.
The algorithms proposed in this chapter employ extension-based methods. Complete
semantics were chosen to evaluate the outputs from the proposed technique. Remember
that, as per Definition 2.4 in Section 2.3.1, a set of arguments S is a complete extension

if and only if S is conflict-free and ∀a1 ∈ S, a1 is acceptable with respect to S; thus,
making S an admissible set..

In the following subsection, I introduce Li, Oren, and Norman’s probabilistic ar-
gumentation framework [133], a new and previously undefined framework within the
context of this thesis, because Algorithms 5.1, 5.2, and 5.3, in Section 5.3.7, employed
the formalism to compute likelihoods.

5.2.2 Probabilistic Argumentation Frameworks

Probabilistic argumentation frameworks [133] extend Dung’s account of abstract argu-
mentation by assigning each argument and relation a probability of inducement.

Definition 5.1 (Probabilistic Argumentation Frameworks). A probabilistic argumen-
tation framework (PrAF) is a tuple

PrAF = (A,PA,R,PR) (5.1)

where (A,R) is a Dung argument system, and PA and PR are probability functions de-
fined over, respectively, the set of arguments, such that ∀ai ∈ A,PA : ai→ (0,1], and the
set of attack relations, such that ∀(ai,a j) ∈ R,PR : (ai,a j)→ (0,1].

Probabilities are computed through random inducement of Dung argumentation
frameworks, referred to as induced frameworks or graphs from now on. The user-
chosen uncertainties of arguments and attacks within the PrAF (i.e., PA and PR) describe
the probabilities associated with the existence of those arguments and relations, and
the instantiation of an induced framework is a realised Dung argument system sampled
from the aforementioned probability functions.

Definition 5.2 (Induced Argumentation Frameworks). For a PrAF (A,PA,R,PR), an
induced graph G I = (A I ,RI) is observed if and only if the following holds:

• A I ⊆ A;
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• RI ⊆ R∩ (A I×A I);

• A I = {ai ∈ A : PA(ai)≥ rai};

• RI = {(ai ∈A I ,a j ∈A I) : PR((ai,a j))≥ r(ai,a j)}

where rai and r(ai,a j) are elements in the unit interval such that rai ,r(ai,a j) ∈ (0,1]⊂ R.
The pseudo-code for a function which can instantiate an induced framework is

presented in Algorithm C.1 in Appendix C.1.
The set of all induced graphs from a probabilistic framework is denoted I(PrAF).
The probability of inducing a Dung-style argument system from a PrAF is com-

puted using the product of the probabilities of the arguments and defeat relations which
did and did not feature in an induced graph. Thus, for a set of induced arguments A I ,
we need to identify the set of relations that might appear within an induced framework,
which is defined as

R̃ = R∩ (A I×A I). (5.2)

It follows that we can calculate the probability of instantiating some induced graph,
under some semantics S, as shown in Equation 5.3, where a and r are, respectively,
arguments and relations that were and were not sampled from the PrAF. Both the ar-
guments and relations are assumed to be sampled independently such that the joint
probability of the realisation of an induced framework is computed through a series
of products. This assumption states that the existence of one argument is indepen-
dent from the existence of other arguments within a given induced graph. Moreover,
the sampling of relations from the PrAF is also assumed to be independent from the
existence of other relations in an induced graph. However, the relations are not sam-
pled entirely independently because they depend on the existence of certain induced
arguments, as shown in Equation 5.2.

PS
PrAF(G

I) = ∏
a∈A I

PA(a) ∏
a∈A\A I

[1−PA(a)] ∏
r∈RI

PR(r) ∏
r∈R̃\RI

[1−PR(r)] (5.3)

The semantic evaluation function ζS(G I ,X ), as stated in Definition 5.3, quantifies
whether a set of arguments is contained within an extension of an induced argumen-
tation framework. The function returns true if and only if the set of arguments X is
contained within an extension, found through computation of the semantics.

Definition 5.3 (Semantic Evaluation Function). Let G I = (A I ,RI) be an induced
argument graph, S be a semantics, E be a set of extensions of G I with respect to
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the semantics S, X be a user-chosen set of arguments, and ζS : (A I ,RI)× 2A I 7→
{0,1} be a semantic evaluation function. The semantic evaluation function returns a
value of unity, i.e. ζS(G I ,X ) = 1, if and only if the set of arguments X features
within an extension, such that X ∈ E . The semantic evaluation function returns zero,
i.e. ζS(G I ,X ) = 0, if and only if the set of arguments do not feature in any of the
extensions, such that X ̸∈ E .

The pseudo-code for the semantic evaluation function is included in Algorithm C.2
in Appendix C.1, for the reader’s benefit.

The probability of observing a set of arguments X is computed by counting the
number of times those arguments were discovered to be acceptable, with respect to the
chosen semantics S, within the extensions of the set of all induced argument graphs
I(PrAF), such that

PS
PrAF(X ) = ∑

G I∈I(PrAF)

PS
PrAF(G

I) where ζ
S(G I ,X ) = true. (5.4)

In this subsection, I have introduced PrAFs, a formalism that provides a method of
quantifying the probability of observing a set of acceptable arguments. In the following
section, I present the two contributions of this chapter: a definition of arguments with
embedded hypotheses and a definition of information arguments, using the ASPIC+

framework; and a novel technique, comprised of a series of algorithms, that is capable
of refining an intelligence analyst’s prior beliefs using PrAFs and Bayes’ theorem.

5.3 On Human-Machine Bayesian Hypothesis Evalua-
tion

While Dung’s seminal account of abstract argumentation allows for the identification
of sets of admissible arguments, its level of abstraction means it pays no attention to the
internal structure of those arguments. The use of structured argumentation is beneficial
within the context of intelligence analyses because it should provide analysts with a
finer-grained representation and understanding of their reasoning. The ASPIC+ frame-
work was chosen for this work because it adopts an intermediate level of abstraction,
whilst also offering an abstract account of the acceptability of structured arguments
[177, 150]. Recall from Section 2.3.2.1 that the ASPIC+ argumentation theory was
restricted to the set of ordinary premises, i.e. K = Kp, and defeasible rules, i.e.
R = Rd , without preferences.
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The remainder of this section proceeds as follows. In Section 5.3.1, I employ Pher-
son and Heuer Jr.’s definition of a hypothesis, as discussed in Chapter 1, and reformu-
late it in terms of the ASPIC+ framework; thus, rendering it capable of representing
hypotheses, while also defining how arguments containing information are instantiated
using the same formalism. I then define how: an analyst can assign prior probabili-
ties to the set of hypotheses in Section 5.3.2; to employ the probability of inducement
in order to describe the uncertainty in sources of information and attacks in Sections
5.3.3 and 5.3.4, respectively; to compute the likelihood of the information and all other
hypotheses being, respectively, justified and defeated, given the hypothesis of interest
was found to be acceptable, in Section 5.3.5; to employ Bayes’ theorem to obtain the
probability of a hypothesis given a semantically evaluated information set in Section
5.3.6; and to conclude the section, in Section 5.3.7, I present the pseudo-code for the
proposed algorithms which, when combined, are capable of refining an analyst’s initial
probabilistic beliefs based upon the acceptability of the arguments present within their
analysis.

5.3.1 Hypotheses and Information

Recall from Chapter 1, a hypothesis is defined as a statement which employs falsifiable
observations to forecast anticipated results clearly. Remember also the ASPIC+ frame-
work and the logical language L from an argumentation system, as per Definition 2.10
in Section 2.3.2.1. In this chapter, it is assumed that there is a set of n hypotheses HL

which are statements within the logical language, as described in Definition 5.4.

Definition 5.4 For a given logical language L , the set HL ⊂L contains n hypothe-
ses, where HL = {h(1)L , ...,h(n)L }, h(i)L refers to the i-th hypothesis and each hypothesis
is a statement within the logical language, such that ∀h(i)L ∈ HL , h(i)L ∈L .

With regards to structured argumentation, I assume that a hypothesis is a statement
that is embedded within the conclusion of an argument so that it is supported by a set of
reasons to believe it. This assumption is in agreement with the argumentation scheme
presented in Chapter 3, where hypotheses form the conclusion of both the original and
adapted versions of Walton’s argument from cause to effect [236]. This assumption
is also aligned with Toniolo et al.’s definition of a hypothesis in [216], where it was
assumed that an extension of an argumentation framework was a hypothesis. The ex-
tensions in Toniolo et al.’s proposal contain an argument with an embedded hypothesis
and the corresponding, acceptable sub-arguments from an ASPIC+ argumentation the-
ory that support that hypothesis. The definition of an argument containing a hypothesis
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within the ASPIC+ formalism is presented in Definition 5.5.

Definition 5.5 For an argumentation theory AT , a hypothesis h(i)L ∈ HL is the conclu-
sion of an argument A(i)

H , such that Conc(A(i)
H ) = h(i)L . The hypothesis h(i)L is supported

by a set of m premises, such that Prem(A(i)
H ) = {p1, ..., pm}. Therefore, using the defi-

nition of an argument in the ASPIC+ framework (Definition 2.14 in Section 2.3.2.1), an
argument A(i)

H containing a hypothesis h(i)L is assumed to have the following defeasible
inference

A(i)
H = {p1, ..., pm⇒ h(i)L }.

Following Definition 5.5, a human agent must select a set of n arguments HA =

{A(1)
H , ...,A(n)

H } containing hypotheses, where A(i)
H is the i-th argument with the i-th hy-

pothesis h(i)L as its conclusion.
After choosing the arguments with embedded hypotheses, the analyst is left with a

set of statements within the logical language that are either information, evidence, or
assumptions. For the purposes of this chapter, I restrict the set of remaining statements
and assume that they only include items of information, as stated in Definition 5.6.
However, I note that one could represent information arguments as evidence by assign-
ing a value of unity to that argument’s inducement probability, as I briefly discuss in
Section 5.3.3.

Definition 5.6 For a logical language L and hypotheses HL ⊂ L , the information
statements are a set IL ⊂ L that contains ñ items of information which are the re-
maining statements within the logical language, such that IL = L \HL , where IL =

{i(1), . . . , i(ñ)} and ∀i( j) ∈ IL , i( j) ∈L .

Similar to arguments which include hypotheses as their conclusion, the statements
of information can also be instantiated within arguments in the ASPIC+ formalism, as
asserted in Definition 5.7. The difference between an argument containing a hypothesis
and one that contains information is that the argument containing information does not
possess a hypothesis as its conclusion.

Definition 5.7 For an argumentation theory (Kp,AS), a set of information statements
IL = {i(1), . . . , i(ñ)} (Definition 5.6), and a set of arguments containing information
only IA = {A(1)

I , . . . ,A(ñ)
I }, the i-th information argument A(i)

I ∈ IA is one where its
conclusion Conc(A(i)

I ) = i( j) is in the logical language, i.e. i( j) ∈ L , and it is not a
hypothesis, i.e. i( j) ̸∈ HL . As per Definition 2.14 in Section 2.3.2.1, the argument A(i)

I

can have the following defeasible inferences:

• A(i)
I = {i( j)}; or
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• A(i)
I = {i(1), ..., i(ñ−1)⇒ i( j)}.

The human agent can choose as many or as few information statements as they
desire in order to instantiate arguments containing information only. However, as I
mentioned earlier, it is assumed that after the analyst has chosen the set of arguments
with embedded hypotheses, the remaining arguments are comprised of information
alone. The set of arguments with their embedded hypotheses HA and the set of argu-
ments containing information IA are employed in the evaluation of those hypotheses,
and those sets should be kept separate to allow for a fair assessment, as stated in Defini-
tion 5.8. This is a common procedure within the intelligence community as individual
hypotheses can only be attacked by data in the row entries within, for example, the
ACH.

Definition 5.8 For an argumentation framework corresponding to an ASPIC+ argu-
mentation theory GAT = (A ,R), the set of arguments containing information IA ∈A

is assumed to be the difference between the set of arguments within GAT and the set of
arguments containing hypotheses HA ∈A , chosen by the user, such that IA = A \ HA

where HA and IA are closed under union, such that HA∪ IA = A , and intersection, such
that HA∩ IA = /0.

In this subsection, I have defined arguments containing hypotheses and arguments
comprised of information with respect to the ASPIC+ framework. The arguments in-
stantiated using this formalism can be converted to a Dung argument system, using
Definition 2.16 in Section 2.3.2.1, and also to a PrAF, as long as the human agent as-
signs a probability of inducement to each argument and relation within the framework.
In the following subsection, I show how the analyst can assign prior probabilities to hy-
potheses in the logical language, and how the confidence in their probabilistic judge-
ments can be represented by inducement probabilities from Li, Oren, and Norman’s
PrAF.

5.3.2 Priors and Confidence in the Probabilities of Hypotheses

Based on the information available to them and their analysis, an intelligence analyst
must make a judgement about the prior probability of each hypothesis. And the analyst
can employ a number of different techniques to that effect. For example, using the
ACH for evaluation, the analyst is able to compute a prior for each hypothesis within
their analysis. Under the assumption that the probability of a hypothesis is equivalent to
the probability of that hypothesis as a statement within the logical language, Equation
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5.5 describes the bounds of those probabilistic judgements, such that

0≤ P(h(i)L )≤ 1, ∀h(i)L ∈ HL . (5.5)

The set of hypotheses chosen by the analyst must be mutually exclusive

P(h(i)L ,h( j)
L ) = 0, ∀h(i)L ,h( j)

L ∈ HL where i ̸= j, (5.6)

and collectively exhaustive

n

∑
i=1

P(h(i)L ) = 1, ∀h(i)L ∈ HL , (5.7)

where n refers to the number of hypotheses chosen by the user.
The reason that it was assumed that the priors of hypotheses were MECE is two-

fold. First, looking to the mutual exclusivity of hypotheses, as shown in Equation
5.6, this assumption ensures that if one hypothesis were found to be true, then the
other hypotheses within an analysis should be false. Second, hypotheses should be
collectively exhaustive, as stated in Equation 5.7, to ensure that the analyst is assessing
all the plausible hypotheses pertaining to their analysis.

As mentioned earlier in this subsection, it was assumed that the prior probability
of a hypothesis was equivalent to the probability of a statement within the logical lan-
guage. It was also assumed that the probability of a hypothesis, a statement within
the logical language, was equivalent to the probability of an argument containing a
hypothesis, such that

P(h(i)L )⇐⇒P(A(i)
H ), ∀h(i)L ∈ HL and ∀A(i)

H ∈ HA. (5.8)

The probability of a hypothesis as a statement or within an argument – i.e. P(h(i)L )

or P(A(i)
H ), respectively – is not to be confused with the probability of inducing an

argument containing a hypothesis, i.e. PA(A
(i)
H ), where

P(A(i)
H ) ⇍⇒ PA(A

(i)
H ). (5.9)

The key distinction between the two probabilities in Equation 5.9 is that the prob-
ability of the hypothesis P(A(i)

H ) is intended to be an intelligence analyst’s prior be-
lief, resulting from their analysis, such as from the outputs from an ACH, whereas the
probability PA(A

(i)
H ) is the inducement probability of an argument with an embedded

hypothesis, and is assumed to be the representation of the analyst’s confidence in their
prior beliefs. The importance of this difference becomes apparent when I introduce
Bayes’ theorem, in Section 5.3.6.
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5.3.3 Uncertainty in Items of Information

As alluded to in Equation 5.9, the inducement probabilities provide a method of de-
scribing the confidence in an analyst’s set of priors for hypotheses. The uncertainty
in an item of information can also be described using the same method. Uncertainty
in items of information may arise from, for example, the truth of an assertion within
the information or the confidence in its source. The intelligence community already
possesses tools which help analysts describe the inherent uncertainty in row entries of
the ACH. One example is the Probability (or Uncertainty) Yardstick [221], which I
introduced in Section 2.1.4. Moreover, as I discussed in Section 2.1.5.2, in the United
Kingdom’s Department for Defence Intelligence’s Quick Wins for Busy Analysts [222],
analysts employ a traffic light system – i.e. green, yellow, and red – to describe the
uncertainty of row entries within the ACH. However, even in this more-expressive ver-
sion of the ACH, analysts are not required, or even shown how, to use the traffic light
system in their reasoning about hypotheses. While this uncertainty quantification is
not used in the evaluation of hypotheses, such metrics could be employed within the
algorithms proposed in this chapter, through assignment of inducement probabilities,
in order to describe an analyst’s confidence in arguments formed from the row entries
of the ACH.

An analyst may decide that data contained within an information argument is cer-
tain, and PrAFs are capable of representing this notion. In this instance, the analyst
should assign a value of unity to the information argument’s inducement probability
such that it will always feature in the set of all induced argument graphs. Such an argu-
ment could be thought of as evidence because there is no uncertainty in its existence.

One interesting point to note here is that arguments containing information alone
are arguments that include either one or more statements from the logical language,
as per Definition 5.7, where each statement may have its own uncertainty score. The
probability of inducement for an information argument is the combination of uncer-
tainty scores for each item of information within the argument. Therefore, the analyst
should reason with the information statements within that argument in order to arrive
at its probability of inducement. While methods for combining uncertainties in this
context are outside of the remit of this chapter and thesis, it is important to note the dis-
tinction between local and global uncertainty scores that, respectively, arise from the
uncertainty of individual information statements and the argument-level uncertainty,
which is a combination of uncertain information statements. For the remainder of this
chapter, it is assumed that the analyst has assigned a global, argument-level uncertainty
score, in the form of an inducement probability, for all information arguments.
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5.3.4 Uncertainty in Attacks

So far, I have described the uncertainty in arguments. However, an analyst might iden-
tify uncertainty in an attack between information arguments, or from an information
argument to an argument with an embedded hypothesis. For instance, as the ACH
should ideally be conducted as a group exercise, an analyst, called Analyst A, might
say to some Analyst B: I am not so sure that this row entry attacks that hypothesis, I do

not think that this attack is so strong, or I disagree that there is an attack between those

information arguments. In this particular instance, a prudent analyst may still want to
include that attack within their analysis, but Pherson and Heuer Jr.’s current version of
the ACH does not allow for this. Inducement probabilities of attack relations provide
an avenue to represent such disagreement and uncertainty.

In this thesis, I omit discussion about attacks from arguments containing hypotheses
to information arguments because such attacks cannot exist within the ACH formalism.
Furthermore, attacks between arguments within embedded hypotheses are assumed to
always be certain due to the mutual exclusivity of hypotheses.

5.3.5 The Likelihood

The likelihood of observing the information and not the other hypotheses, given the ex-
istence and acceptability of the hypothesis of interest, can be computed using PrAFs.
Computing this probability is important because it should allow the intelligence ana-
lyst to understand how probable the information and defeat of all other hypotheses is,
given that the hypothesis they are interested in is assumed to be true. This conditional
probability would ordinarily be quite difficult for an analyst to compute, but it is a
task where computational argumentation could provide tangible benefit to the analyst.
There are three different approaches for the computation of the likelihood, which are
introduced throughout this subsection. The first method assumes that the acceptability
of the information and the hypothesis of interest are dependent. The second assumes
that the acceptability of information and the lead hypothesis is completely independent.
The third method employs the independence assumption from the second to approxi-
mate the likelihood using the probability of all other hypotheses either not existing nor
being accepted, reducing the number of multiplications, in order to use the proposed
technique on large PrAFs. In all three approaches, the existence and acceptability of
all other hypotheses was assumed to be independent.
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5.3.5.1 Assuming Dependence Between Hypotheses and Information

At a glance, assuming dependence between evaluated information arguments and a
hypothesis is intuitive because the acceptability of a hypothesis should depend on the
amount of information which either supports or conflicts with it. For this approach, one
must first quantify three things, namely: the probability of acceptance of the i-th argu-
ment with the i-th hypothesis embedded within its conclusion; the joint probability of
acceptance of the set of information arguments and the i-th argument that contains the
i-th hypothesis; and, finally, the joint probability of all other arguments with embedded
hypotheses not existing nor being acceptable, except for the i-th argument containing
the i-th hypothesis because that is the argument for which the posterior is approximated.

The probability of existence and acceptance of the i-th hypothesis. The first, and
by far the simplest, quantity that we are interested in calculating is the probability of
observing the argument A(i)

H in the extensions across the set of all induced graphs. Sub-
stituting the argument A(i)

H into Equation 5.4, we are now able to quantify its probability
of existence and acceptance, as shown in Equation 5.10.

PS
PrAF

(
{A(i)

H }
)
= ∑

G I∈I(PrAF)

PI
PrAF

(
G I) where ζ

S(G I ,{A(i)
H }) = true (5.10)

The existence of the argument A(i)
H depends on the inducement probability assigned

to it by the analyst, i.e. PA(A
(i)
H ). The inducement probability of an argument con-

taining a hypothesis was assumed to be a representation of the analyst’s confidence in
their prior probabilistic judgements, and it is not to be confused with the prior itself,
as previously shown in Equation 5.9. The probability that the argument A(i)

H will be
accepted, i.e. PS

PrAF({A
(i)
H }), depends on the topology of the PrAF, and whether it was

acceptable, according to the chosen semantics S, in a subset of induced frameworks.
For the sake of brevity, PS

PrAF({A}) and PS
PrAF({A1,A2, . . . ,A∞}) is, respectively,

denoted PS
PrAF(A) and PS

PrAF(A1,A2, . . . ,A∞) throughout the remainder of this chapter.
With a slight abuse of notation, joint probabilities which are the union of sets of argu-
ments, e.g. the set of information arguments IA and an argument containing a hypoth-
esis A(i)

H , such as PS
PrAF(IA∪{A(i)

H }), may also be referred to as either PS
PrAF(IA∪A(i)

H ),
PS

PrAF(IA;A(i)
H ), or PS

PrAF(A
(1)
I , . . . ,A(ñ)

I ;A(i)
H ).

The probability of existence and acceptance of all information arguments and the
i-th hypothesis. We now wish to compute the joint probability of observing the set
of information arguments IA and the argument that contains the hypothesis of interest,



132 5.3 ON HUMAN-MACHINE BAYESIAN HYPOTHESIS EVALUATION

such that

PS
PrAF

(
IA,A

(i)
H

)
= PS

PrAF

(
IA∪A(i)

H

)
(5.11)

= PS
PrAF

(
A(1)

I , . . . ,A(ñ)
I ;A(i)

H

)
, (5.12)

where the probability in Equation 5.12 can be computed, again, using PrAFs, in accor-
dance with Equation 5.4.

The probability of all other hypotheses not existing nor being acceptable. The
final probability required to compute the likelihood is the probability of all other argu-
ments with embedded hypotheses not existing nor being found to be acceptable. The
reason for this is that if one argument containing a hypothesis is found to be true, then
all others must be false, due to the mutual exclusivity of hypotheses. In order to com-
pute this probability, we must identify the set of arguments with embedded hypotheses
that are assumed to be untrue when the argument A(i)

H exists and is acceptable. It fol-
lows that this set is just the complement of the set of hypotheses HA where the argument
of interest A(i)

H has been removed, such that

Hc,(i)
A = HA \{A(i)

H } (5.13)

is the set of arguments with embedded hypotheses without the argument containing the
hypothesis of interest.

Using the set of remaining hypotheses Hc,(i)
A , shown in Equation 5.13, the joint

probability of non-existence and defeat of all other arguments with embedded hypothe-
ses is presented in Equation 5.14. Assuming that the presence and acceptance of those
arguments is independent, the joint probability in Equation 5.14 can be reduced to a
series of products of marginal probabilities, as shown in Equation 5.15.

PS
PrAF

(
¬Hc,(i)

A

)
= PS

PrAF

(
¬A(1)

H , . . . ,¬A(n−1)
H

)
(5.14)

= PS
PrAF

(
¬A(1)

H

)
. . .PS

PrAF

(
¬A(n−1)

H

)
(5.15)

While one could count the number of times that an argument with an embedded
hypothesis was not present within the extensions of the set of all induced argument
graphs, this computation is superfluous because the number of times those arguments
were acceptable is already counted, as I show later in the pseudo-codes for all three
approaches presented in Section 5.3.7. Using the axioms of probability, the probability
that an argument did not exist and was not acceptable is just the probability that it was
accepted subtracted from unity, such that

PS
PrAF

(
¬A( j)

H

)
= 1−PS

PrAF

(
A( j)

H

)
. (5.16)
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By substituting the notion presented in Equation 5.16 into 5.15 for all arguments
within the set Hc,(i)

A , it follows that

PS
PrAF

(
¬Hc,(i)

A

)
= ∏

A( j)
H ∈Hc,(i)

A

[
1−PS

PrAF

(
A( j)

H

)]
(5.17)

where PS
PrAF

(
A( j)

H

)
is computed in a similar fashion to Equation 5.10 but for the j-th

argument containing the j-th hypothesis.

The likelihood. Now we have all that we need to compute the likelihood, which is
just the probability that the information arguments and the lead hypothesis were ac-
ceptable, and all the remaining arguments containing hypotheses did not exist nor were
acceptable, conditioned on the acceptability of the argument containing the hypothesis
of interest. More formally,

PS
PrAF

(
IA,¬Hc,(i)

A |A(i)
H

)
=

PS
PrAF

(
IA∪A(i)

H ∪¬Hc,(i)
A

)
PS

PrAF

(
A(i)

H

) (5.18)

where the numerator is the joint probability of: acceptance of the information; the
argument containing the hypothesis of interest A(i)

H being true; and the probability of
non-acceptance for all other hypotheses. The denominator is the probability of the lead
hypothesis.

Under the assumption that the probability of the argument with the embedded hy-
pothesis A(i)

H and the set of information arguments IA are independent from all other
unacceptable hypotheses, the joint probability on the numerator of Equation 5.18 can
be split into the product of two probabilities, as shown in Equation 5.19.

PS
PrAF

(
IA,¬Hc,(i)

A |A(i)
H

)
=

PS
PrAF

(
IA,A

(i)
H

)
PS

PrAF

(
¬Hc,(i)

A

)
PS

PrAF

(
A(i)

H

) (5.19)

By substituting Equations 5.12 and 5.17 into Equation 5.19, the likelihood of accep-
tance of the argument containing the hypothesis of interest and the set of information
arguments, and defeat of all other hypotheses, conditioned on the acceptability of the
argument A(i)

H , across N induced graphs, can be approximated using Equation 5.20.

PS
PrAF

(
IA,¬Hc,(i)

A |A(i)
H

)
=

PS
PrAF

(
A(1)

I , . . . ,A(ñ)
I ,A(i)

H

)
∏A( j)

H ∈Hc,(i)
A

[
1−PS

PrAF

(
A( j)

H

)]
PS

PrAF

(
A(i)

H

)
(5.20)
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As shown in Equation 5.20, the likelihood of the information and the other, un-
accepted arguments containing hypotheses, given the argument with the embedded
hypothesis is accepted, can be computed using a dependence assumption. However,
computing the likelihood using this method is not without its issues because the de-
pendence assumption, i.e. PS

PrAF

(
A(1)

I , . . . ,A(ñ)
I ,A(i)

H

)
, necessitates that all information

arguments and an argument containing a hypothesis are in an extension of an induced
framework. While this is not an issue for small PrAFs, computing the likelihood will
become more challenging when employing real-world data with this approach. For
instance, for small PrAFs, the likelihood can almost always be computed even for
information arguments that attack each other and the argument with embedded hypoth-
esis, if the number of induced argumentation frameworks N is large enough. However,
for large, real-world PrAFs, it is highly unlikely that all information arguments and an
argument containing a hypothesis will feature in the same extension, especially when a
subset of information arguments attack the hypothesis of interest, because of the poten-
tial variance of argumentation frameworks that can be induced. Thus, for a sufficiently
large enough PrAF, with information arguments that possess a more definite proba-
bility of inducement, the joint probability will become increasingly small, if not zero,
because there will be fewer induced graphs that contain those arguments as nodes with
no attacks between them.

5.3.5.2 Assuming Independence Between Evaluated Arguments

One solution to the problem pertaining to Equation 5.20 is to relax the dependence
assumption. In this subsection, I will reformulate the likelihood using the assumption
that the probability of existence and acceptability of the set of information arguments
and the argument A(i)

H are independent.
To begin, Equation 5.12 can be rewritten so that the joint probability of the set of

information arguments and the argument A(i)
H is the product of marginals, as shown in

Equation 5.21.

PS
PrAF

(
IA,A

(i)
H

)
= PS

PrAF

(
A(1)

I

)
. . .PS

PrAF

(
A(ñ)

I

)
PS

PrAF

(
A(i)

H

)
(5.21)

Substituting Equation 5.21 into Equation 5.19 results in a likelihood comprised of
independent probabilities, such that

PS
PrAF

(
IA,¬Hc,(i)

A |A(i)
H

)
=

PS
PrAF

(
A(1)

I

)
. . .PS

PrAF

(
A(ñ)

I

)
PS

PrAF

(
¬A(1)

H

)
. . .PS

PrAF

(
¬A(n−1)

H

)
PS

PrAF

(
A(i)

H

)
PS

PrAF

(
A(i)

H

) (5.22)
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where the probability of the argument with an embedded hypothesis A(i)
H cancels out,

such that

PS
PrAF

(
IA,¬Hc,(i)

A |A(i)
H

)
=

PS
PrAF

(
A(1)

I

)
. . .PS

PrAF

(
A(ñ)

I

)
PS

PrAF

(
¬A(1)

H

)
. . .PS

PrAF

(
¬A(n−1)

H

)
(5.23)

and reduces to

PS
PrAF

(
IA,¬Hc,(i)

A |A(i)
H

)
= ∏

A( j)
I ∈IA

PS
PrAF

(
A( j)

I

)
∏

A( j)
H ∈Hc,(i)

A

[
1−PS

PrAF

(
A( j)

H

)]
. (5.24)

With regards to Equation 5.24, an interesting point to note is that the probability
only depends on two terms: the probability of the information; and the probability that
the other arguments containing other hypotheses did not exist and were not acceptable.
In a sense, this result is argumentative because the likelihood depends on the informa-
tion available and the probability that all other hypotheses were defeated. While the
argument of interest A(i)

H is not employed in the quantification of the likelihood, its ac-
ceptability across the set of all induced argument graphs is implied by the probability
that all other hypotheses were unacceptable, due to the mutual exclusivity of hypothe-
ses. Moreover, the likelihood is somewhat analogous to the ACH’s attempt to reduce
confirmation bias, as I discussed in Section 2.1.5.2, because the most likely hypoth-
esis within the ACH is the one that conflicts with the fewest number of row entries,
and the likelihood in Equation 5.24 depends on the defeat of other hypotheses, not the
acceptability of the hypothesis that we are interested in.

5.3.5.3 Towards Real-World Data: Solving the Floating Point Underflow Prob-
lem

While the likelihood in Equation 5.24 can be approximated using PrAFs, as the number
of information arguments increases, the joint probability of the semantically evaluated
information set will tend towards zero, such that

lim
|IA|→∞

∏
A( j)

I ∈IA

PS
PrAF

(
A( j)

I

)
≈ 0. (5.25)

Although this is not particularly an issue for small, toy problems, it is indeed a
significant problem when working with real-world data with a sufficiently large number
of arguments, creating a floating point underflow condition such that a computer cannot
represent the joint probability of information in memory. To resolve this, there is one
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obvious, slight adaptation to the calculation of the likelihood which is described in
more detail below.

Using Equation 5.24, which contains the assumption about the independence of the
probability of the information, the ratio of the likelihoods conditioned on the arguments
A(i)

H and A(k)
H is presented in Equation 5.26.

PS
PrAF

(
IA,¬Hc,(i)

A |A(i)
H

)
PS

PrAF

(
IA,¬Hc,(k)

A |A(k)
H

) =
∏A( j)

I ∈IA
PS

PrAF

(
A( j)

I

)
∏A( j)

H ∈Hc,(i)
A

[
1−PS

PrAF

(
A( j)

H

)]
∏A(m)

I ∈IA
PS

PrAF

(
A(m)

I

)
∏A(m)

H ∈Hc,(k)
A

[
1−PS

PrAF

(
A(m)

H

)]
(5.26)

Due to the assumption about independence between the information arguments and
hypotheses, the joint probability of information arguments in both the numerator and
denominator of Equation 5.26 are equal, such that

∏A( j)
I ∈IA

PS
PrAF

(
A( j)

I

)
∏A(m)

I ∈IA
PS

PrAF

(
A(m)

I

) = 1, ∀A( j)
I ,A(m)

I ∈ IA. (5.27)

Equation 5.27 enables the simplification of Equation 5.26 through the removal of the
joint probability of information for both likelihoods, resulting in Equation 5.28.

PS
PrAF

(
IA,¬Hc,(i)

A |A(i)
H

)
PS

PrAF

(
IA,¬Hc,(k)

A |A(k)
H

) =
∏A( j)

H ∈Hc,(i)
A

[
1−PS

PrAF

(
A( j)

H

)]
∏A(m)

H ∈Hc,(k)
A

[
1−PS

PrAF

(
A(m)

H

)] (5.28)

The likelihood, therefore, is proportional to the probability of defeat of all other
arguments with embedded hypotheses, such that

PS
PrAF

(
IA,¬Hc,(i)

A |A(i)
H

)
= k · ∏

A( j)
H ∈Hc,(i)

A

[
1−PS

PrAF

(
A( j)

H

)]
(5.29)

where k is a constant equal to the joint probability of acceptable information arguments.
Using the independence assumption, the joint probability of the information is the

same for all arguments containing hypotheses. Thus, the proportion of the likelihood
that affects it is the probability of all other hypotheses being defeated, as shown in
Equation 5.30, which can be employed as an analogue for the approximation of the
likelihood.

PS
PrAF

(
IA,¬Hc,(i)

A |A(i)
H

)
∝ ∏

A( j)
H ∈Hc,(i)

A

[
1−PS

PrAF

(
A( j)

H

)]
, ∀A(i)

H ∈ HA. (5.30)
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In this subsection, I have defined how to compute the likelihood of the informa-
tion and defeat of all other hypotheses given the argument containing the hypothesis
of interest was acceptable. Three different approaches that assumed dependence and
independence between information and hypotheses were presented in Equations 5.20,
5.24, and 5.30. In the next subsection, I show how the likelihood and an intelligence
analyst’s set of priors are combined with Bayes’ theorem to compute the posterior
probability of a hypothesis.

5.3.6 Bayes’ Theorem

Turning to Bayes’ theorem, we can compute the probability of the hypothesis of in-
terest, conditioned on the probability of the information arguments and the probability
of all other hypotheses not existing nor being acceptable. The calculation of Bayes’
theorem is based upon the assumption that the likelihood that was approximated using
PrAFs is equivalent to the likelihood of the information arguments and defeat of all
other hypotheses given the hypothesis of interest is acceptable, such that

PS
PrAF

(
IA,¬Hc,(i)

A |A(i)
H

)
⇐⇒P

(
IA,¬Hc,(i)

A |A(i)
H

)
(5.31)

Following this assumption, the probability of an argument containing a hypothesis
A(i)

H conditioned on the set of acceptable information IA and the defeat of all other
arguments with embedded hypotheses Hc,(i)

A is found to be

P
(

A(i)
H |IA,¬Hc,(i)

A

)
=

P
(

IA,¬Hc,(i)
A |A(i)

H

)
P
(

A(i)
H

)
∑

j∈HA

P
(

IA,¬Hc,( j)
A |A( j)

H

)
P
(

A( j)
H

) (5.32)

where P
(

IA,¬Hc,(i)
A |A(i)

H

)
and P

(
IA,¬Hc,( j)

A |A( j)
H

)
are the likelihoods, which can be

approximated using either Equations 5.20, 5.24 or 5.30, and P(A(i)
H ) and P(A( j)

H ) is the
human agent’s prior beliefs, as defined in Equation 5.8, for the i-th and j-th argument
containing a hypothesis, respectively.

The distinction between an analyst’s prior beliefs about a hypothesis and the in-
ducement probabilities of arguments containing hypotheses is made apparent in Equa-
tion 5.32. Here, priors are represented as either P(A(i)

H ) or P(A( j)
H ), respectively, for the

i-th and j-th hypothesis. Those probabilities are the output from an intelligence ana-
lyst’s analysis and follow the axioms presented in Equations 5.5, 5.6, 5.7, and 5.8. On
the contrary, the likelihoods – i.e., P

(
IA,¬Hc,(i)

A |A(i)
H

)
and P

(
IA,¬Hc,( j)

A |A( j)
H

)
– incor-

porate the analyst’s confidence in their prior probabilistic judgements by employing the
inducement probability of information arguments and hypotheses to alter the number
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of times those arguments (and attacks between them) were instantiated and acceptable
across N induced graphs.

5.3.7 Pseudo-code

In this subsection, I present the algorithms for human-machine Bayesian hypothesis
evaluation to make the approach discussed in Sections 5.3.1 to 5.3.6 concrete. There
are four, distinct algorithms. Algorithms 5.1, 5.2, and 5.3 approximate the likelihood
of the information and the defeat of all other hypotheses, given the argument A(i)

H is ac-
ceptable. Algorithm 5.1 computes the likelihood using the assumption of dependence
between the set of information arguments and arguments with embedded hypotheses,
using Equation 5.20. Algorithm 5.2 assumes independence between information argu-
ments and hypotheses, and computes the likelihood using Equation 5.24. Algorithm
5.3 employs the same independence assumption and solves the floating point under-
flow condition by using only the defeat of all other hypotheses to approximate the
likelihood, in line with Equation 5.30. Both Algorithms 5.1 and 5.2 take as input: a
PrAF; a set of arguments containing hypotheses HA; a set of information arguments
IA; a semantics S; and the number of induced graphs N. Algorithm 5.3 takes the same
input, however it does not require the set of information arguments for the algorithm.
The output from Algorithms 5.1, 5.2, and 5.3 is a list of n likelihoods for all arguments
with embedded hypotheses chosen by the human agent.

Algorithm 5.4 uses Bayes’ theorem, as defined in Equation 5.32, to combine a
human agent’s probabilistic judgements about the prior probabilities of hypotheses and
the outputs from Algorithms 5.1, 5.2, and 5.3.

A depiction of how the four algorithms were combined is provided in Figure 5.1.

5.3.7.1 Bayes’ Theorem

Algorithm 5.4 employs Bayes’ theorem to produce a posterior estimate of the prob-
ability of the i-th argument containing the i-th hypothesis, given the set of evaluated
information arguments and defeat of all other hypotheses. The algorithm takes as in-
put: a set of arguments containing hypotheses HA chosen by the analyst; the analyst’s
belief about the prior probability of each hypothesis; and the list of likelihoods, which
were approximated using either Algorithms 5.1, 5.2, or 5.3. The output from the algo-
rithm is a refined probabilistic estimate of the probability of the argument A(i)

H which
incorporates the analyst’s prior beliefs, uncertainty pertaining to the information and
hypotheses, and the acceptability of arguments found within the human agent’s analy-
sis.
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Start

PrAF , HA

IA = A \HA (Definition 5.8)

Likelihood

Algorithm 5.2

Algorithm 5.1

Algorithm 5.3

Bayes’ Theorem (Algorithm 5.4) P(A(i)
H ),∀A(i)

H ∈ HA

Posteriors

Stop

Figure 5.1: A flowchart depicting the process for approximating the posterior probabil-
ity of arguments with embedded hypotheses conditioned on the available information
and the defeat of all other hypotheses.
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Algorithm 5.1: Compute the likelihood using Equation 5.20.
Input : A PrAF = (A,PA,R,PR);

A set of arguments with embedded hypotheses HA;
A set of arguments containing information IA;
A semantics S;
A number of trials N

Output: A list of |HA| likelihoods PS
PrAF (IA,¬HA|AH ) for each argument with an embedded hypothesis A(i)

H .

1 AH =
[
A(1)

H , . . . ,A(n)
H

]
← HA // Convert the set HA to an indexed array AH

2 AHandI =
[
[ ]1, . . . , [ ]n

]
// Create an array containing n = |HA| empty arrays

3 for i = 1 to n do

4 A(i)
HandI ←

[
A(i)

H ,A(1)
I , . . . ,A(ñ)

I

]
// Set A(i)

HandI equal to the i-th argument with an

embedded hypothesis and all the information arguments

5 CH ← zeros(CH , |AH |) // Create an array of zeros, of size |AH |, to count the

number of times an argument containing a hypothesis was acceptable

6 CHandI ← zeros(CHandI , |AH |) // Create an array of zeros, of size |AH |, to count

the number of times an argument containing a hypothesis and all the

information was acceptable

7 for 1 to N do
8 G I ← INDUCE AF(PrAF) // Algorithm C.1 in Appendix C.1

9 forall i ∈ AH do
10 C

(i)
H = SEMANTIC EVALUATION FUNCTION(G I ,A(i)

H ,S,C
(i)
H ) // Algorithm C.2 in

Appendix C.1

11 C
(i)
HandI = SEMANTIC EVALUATION FUNCTION(G I ,A(i)

HandI ,S,C
(i)
HandI) // Algorithm C.2 in

Appendix C.1

12 PS
PrAF (IA,¬HA|AH ) ← zeros

[
PS

PrAF (IA,¬HA|AH ) , |AH |
]

// Create an array of zeros, of

size AH, to store the likelihoods

13 for i ∈ AH do
14 PS

PrAF (A
(i)
H ) = 0; PS

PrAF (IA,A
(i)
H ) = 0; PS

PrAF (¬Hc,(i)
A ) = 0 // Set to zero the probability of

the i-th argument containing a hypothesis, the joint probability of

the information and the i-th argument with an embedded hypothesis,

and the probability of defeat of all other hypotheses

15 forall j ∈ AH do
16 if A(i)

H = A( j)
H then

17 PS
PrAF (A

(i)
H ) =

C
( j)
H
N // Compute A(i)

H ’s probability

18 PS
PrAF (IA,A

( j)
H ) =

C
( j)
HandI

N // Compute the joint probability of A(i)
H and

the information arguments

19 else
20 if PS

PrAF (¬Hc,(i)
A ) = 0 then

21 PS
PrAF (¬Hc,(i)

A ) = 1− C
( j)
H
N // Compute the probability of defeat for

A( j)
H , if the probability of defeat is equal to zero

22 else

23 PS
PrAF (¬Hc,(i)

A ) = PS
PrAF (¬Hc,(i)

A ) ×

(
1− C

( j)
H
N

)
// Compute the probability

of defeat for A( j)
H and multiply by PS

PrAF (¬Hc,(i)
A ), if

PS
PrAF (¬Hc,(i)

A ) is non-zero

24 PS
PrAF (IA,¬Hc,(i)

A |A(i)
H ) =

PSPrAF (IA ,A(i)H )PSPrAF (¬Hc,(i)
A )

PSPrAF (A(i)H )
// Compute the likelihood

conditioned on A(i)
H (Equation 5.20)

25 PS
PrAF (IA,¬HA|AH ) ← PS

PrAF (IA,¬Hc,(i)
A |A(i)

H ) // Append the result

26

27 return PS
PrAF (IA,¬HA|AH )
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Algorithm 5.2: Compute the likelihood using Equation 5.24.
Input : A PrAF = (A,PA,R,PR);

A set of arguments with embedded hypotheses HA;
A set of arguments containing information IA;
A semantics S;
A number of trials N

Output: A list of |HA| likelihoods PS
PrAF (IA,¬HA|AH ) for each argument with an embedded hypothesis A(i)

H .

1 AH =
[
A(1)

H , . . . ,A(n)
H

]
← HA // Convert the set HA to an indexed array AH

2 AI =
[
A(1)

I , . . . ,A(ñ)
I

]
← IA // Convert the set IA to an indexed array AI

3 CH ← zeros(CH , |AH |) // Create an array of zeros, of size |AH |, to count the

number of times an argument containing a hypothesis was acceptable

4 CI ← zeros(CI , |AI |) // Create an array of zeros, of size |AI |, to count the

number of times each information argument was acceptable

5 for 1 to N do
6 G I ← INDUCE AF(PrAF) // Algorithm C.1 in Appendix C.1

7 forall i ∈ AH do
8 C

(i)
H = SEMANTIC EVALUATION FUNCTION(G I ,A(i)

H ,S,C
(i)
H ) // Algorithm C.2 in

Appendix C.1

9 forall i ∈ AI do
10 C

(i)
I = SEMANTIC EVALUATION FUNCTION(G I ,A(i)

I ,S,C
(i)
I ) // Algorithm C.2 in

Appendix C.1

11 PS
PrAF (IA) = 0 // Set the probability of evaluated information arguments to

zero

12 forall i ∈ AI do
13 if PS

PrAF (IA) = 0 then

14 PS
PrAF (IA) =

C
(i)
I
N // Compute the probability of A(i)

I , if PS
PrAF (IA) is equal

to zero

15 else

16 PS
PrAF (IA) = PS

PrAF (IA)×

(
C
(i)
I
N

)
// Compute the probability of A(i)

I and

multiply by PS
PrAF (IA), if PS

PrAF (IA) is non-zero

17 PS
PrAF (IA,¬HA|AH ) ← zeros

[
PS

PrAF (IA,¬HA|AH ) , |AH |
]

// Create an array of zeros, of

size AH, to store the likelihoods

18 for i ∈ AH do
19 PS

PrAF (¬Hc,(i)
A ) = 0 // Set the probability of defeat of all other hypotheses

to zero

20 forall j ∈ AH do
21 if A(i)

H ̸= A( j)
H then

22 if PS
PrAF (¬Hc,(i)

A ) = 0 then

23 PS
PrAF (¬Hc,(i)

A ) = 1− C
( j)
H
N // Compute the probability of defeat for

A( j)
H , if the probability of defeat is equal to zero

24 else

25 PS
PrAF (¬Hc,(i)

A ) = PS
PrAF (¬Hc,(i)

A ) ×

(
1− C

( j)
H
N

)
// Compute the probability

of defeat for A( j)
H and multiply by PS

PrAF (¬Hc,(i)
A ), if

PS
PrAF (¬Hc,(i)

A ) is non-zero

26 PS
PrAF (IA,¬Hc,(i)

A |A(i)
H ) = PS

PrAF (IA)PS
PrAF (¬Hc,(i)

A ) // Compute the likelihood conditioned

on A(i)
H (Equation 5.24)

27 PS
PrAF (IA,¬HA|AH ) ← PS

PrAF (IA,¬Hc,(i)
A |A(i)

H ) // Append the result

28 return PS
PrAF (IA,¬HA|AH )
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Algorithm 5.3: Compute the likelihood using Equation 5.30.
Input : A PrAF = (A,PA,R,PR);

A set of arguments with embedded hypotheses HA;
A semantics S;
A number of trials N

Output: A list of |HA| likelihoods PS
PrAF (IA,¬HA|AH ) for each argument with an embedded hypothesis A(i)

H .

1 AH =
[
A(1)

H , . . . ,A(n)
H

]
← HA // Convert the set HA to an indexed array AH

2 CH ← zeros(CH , |AH |) // Create an array of zeros, of size |AH |, to count the

number of times an argument containing a hypothesis was acceptable

3 for 1 to N do
4 G I ← INDUCE AF(PrAF) // Algorithm C.1 in Appendix C.1

5 forall i ∈ AH do
6 C

(i)
H = SEMANTIC EVALUATION FUNCTION(G I ,A(i)

H ,S,C
(i)
H ) // Algorithm C.2 in

Appendix C.1

7 PS
PrAF (IA,¬HA|AH ) ← zeros

[
PS

PrAF (IA,¬HA|AH ) , |AH |
]

// Create an array of zeros, of

size AH, to store the likelihoods

8 for i ∈ AH do
9 PS

PrAF (¬Hc,(i)
A ) = 0 // Set the probability of defeat of all other hypotheses

to zero

10 forall j ∈ AH do
11 if A(i)

H ̸= A( j)
H then

12 if PS
PrAF (¬Hc,(i)

A ) = 0 then

13 PS
PrAF (¬Hc,(i)

A ) = 1− C
( j)
H
N // Compute the probability of defeat for

A( j)
H , if the probability of defeat is equal to zero

14 else

15 PS
PrAF (¬Hc,(i)

A ) = PS
PrAF (¬Hc,(i)

A ) ×

(
1− C

( j)
H
N

)
// Compute the probability

of defeat for A( j)
H and multiply by PS

PrAF (¬Hc,(i)
A ), if

PS
PrAF (¬Hc,(i)

A ) is non-zero

16 PS
PrAF (IA,¬Hc,(i)

A |A(i)
H ) = PS

PrAF (¬Hc,(i)
A ) // Compute the likelihood conditioned on A(i)

H

(Equation 5.30)

17 PS
PrAF (IA,¬HA|AH ) ← PS

PrAF (IA,¬Hc,(i)
A |A(i)

H ) // Append the result

18 return PS
PrAF (IA,¬HA|AH )
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Algorithm 5.4: An algorithm to compute Bayes’ theorem using Equation
5.32.

Input : A set of arguments with embedded hypotheses HA;
Prior probabilities of arguments containing a hypothesis ∀A(i)

H ∈ HA, P(A(i)
H );

A list of likelihoods conditioned on each hypothesis PS
PrAF (IA,¬HA|AH )

Output: A posterior probability P(A(i)
H |IA,¬Hc,(i)

A ) for the argument A(i)
H conditioned on the acceptability of

information arguments and the defeat of all other hypotheses.
1 AH =

[
A(1)

H , . . . ,A(n)
H

]
← HA // Convert the set HA to an indexed array AH

2 P(IA,¬HA) = 0 // Set the total probability equal to zero

3 forall j ∈ AH do
4 P(IA,¬HA) = P(IA,¬HA)+PS

PrAF (IA,¬Hc,( j)
A |A( j)

H )P(A( j)
H ) // Multiply the likelihood

conditioned on A( j)
H by the human agent’s j-th prior P(A( j)

H )

5 P(A(i)
H |IA,¬Hc,(i)

A ) =
PSPrAF (IA ,¬Hc,(i)

A |A(i)H )P(A(i)H )

P(IA ,¬HA) // Compute Bayes’ theorem (Equation 5.32)

6 return P(A(i)
H |IA,¬Hc,(i)

A )

5.4 Experimental Evaluation

To demonstrate how the proposed approach was able to refine probabilistic judgements
about hypotheses using semantically evaluated information, Algorithms 5.1, 5.2, 5.3,
and 5.4 were implemented in Python [232] and evaluated using a set of simple, ab-
stract examples that contained two hypotheses, with some discussion pertaining to the
outputs, in Section 5.4.1. Then, in Section 5.4.2, I present a result obtained, using Al-
gorithm 5.3, from the Operation Fortitude-South argumentation framework, introduced
in the beginning of Part II, in order to assess whether the proposed algorithms could be
employed on real-world scenarios. The result from the Operation Fortitude-South sce-
nario was computed using a high performance computing cluster1, so I present some
strong scaling speedup and weak scaling efficiency results for two parallel implemen-
tation of Algorithm 5.3 in Section 5.4.2.1.

While the results in presented Sections 5.4.1 and 5.4.2 focused on two arguments
with embedded hypotheses only, Algorithms 5.1, 5.2, 5.3, and 5.4 can be run with more
than two hypotheses. However, results for scenarios with more than two hypotheses
were omitted from this thesis for the sake of brevity.

5.4.1 A Set of Abstract Examples

In this subsection, I present the results from running the algorithms in Section 5.3.7
on a set of abstract examples, which were assumed to be analogous to the types of

1The high performance computing cluster employed was called Scafell Pike: https://www.hartree.
stfc.ac.uk/technologies/high-performance-computing/ (Accessed on: 02.10.2024).

https://www.hartree.stfc.ac.uk/technologies/high-performance-computing/
https://www.hartree.stfc.ac.uk/technologies/high-performance-computing/
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frameworks that one might instantiate within an evolving intelligence scenario. I al-
tered the number of information arguments that were in conflict with arguments that
contained hypotheses, as well as changed the set of inducement probabilities, in order
to understand how they affected the revised, posterior estimates.

Experimental Setup. All the results presented in this subsection were conducted on
a Windows machine with an AMD Ryzen 9 5900X 12-Core 3.7GHz Central Processing
Unit (CPU) and 32Gb of Random Access Memory (RAM). Each experiment employed
complete extensions which were computed using a disjunctive logic programming sys-
tem [131]. The number of trials was equal to (N =) 30,000 to ensure that posterior
estimates could be compared, and the average time to complete execution was 870
±30 seconds.

I now describe the methodology pertaining to the instantiation of arguments which
contained either hypotheses or information only, and the attacks emanating from them.

The instantiation of arguments containing hypotheses and their attacks. While
intelligence analysts are required to make judgements about the prior probability of hy-
potheses, they may not be so confident in their judgements. Therefore, the probability
of inducement for arguments with embedded hypotheses was assumed to be between
zero and unity, such that

0≤ PA(A
(i)
H )≤ 1, ∀A(i)

H ∈ HA. (5.33)

Due to the mutual exclusivity of hypotheses, symmetric attacks were instantiated
between arguments containing hypotheses with an inducement probability of unity.
This ensured that if more than one argument containing a hypothesis featured within an
induced argument graph, then those arguments would attack each other. More formally,

∀A(i)
H ,A( j)

H ∈ HA, PR

(
(A(i)

H ,A( j)
H )
)
= 1, (5.34)

where i ̸= j.
Finally, it was assumed that arguments containing hypotheses could not attack in-

formation arguments. This approach is in accordance with the ACH, as discussed in
Section 2.1.5.2, where hypotheses cannot attack row entries.

The instantiation of information arguments and their attacks. The probability of
inducement for information arguments was assumed to be the same as arguments with
embedded hypotheses, such that

0≤ PA(A
(i)
I )≤ 1, ∀A(i)

I ∈ IA. (5.35)
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However, the method of attack instantiation for information arguments differed
slightly from its hypothesis counterpart. It was assumed that information arguments
could attack any other argument within the PrAF with a probability of inducement
within the unit interval, such that

∀A(i)
I ∈ IA, and ∀a j ∈ A, 0≤ PR

(
(A(i)

I ,a j)
)
≤ 1. (5.36)

I begin this experimental evaluation by considering scenarios that possessed two
arguments containing hypotheses, with a topological symmetry between them, in or-
der to understand how both altering the analyst’s choice of prior and a PrAF affected
posterior estimates. To ensure that Bayes’ theorem could be successfully computed for
two hypotheses, priors were assumed to have the following relationship:

P(A(1)
H ) = 1−P(A(2)

H ). (5.37)

5.4.1.1 Hypotheses and No Information

I begin with the simplest experiments, which were conducted on a probabilistic frame-
work with two arguments containing hypotheses and no information, as shown in Fig-
ure 5.2a. The inducement probabilities for both arguments was set to 0.5 to represent a
lack of confidence in the analyst’s prior probabilistic judgements about both hypothe-
ses. The posterior estimates presented in Figures 5.2b, 5.2c, and 5.2d remain approx-
imately equal to the analyst’s set of priors because both hypotheses were found to be
justified roughly the same number of times across N induced graphs.

Now suppose the human agent was less confident in the prior probability of, say,
the second argument A(2)

H containing a hypothesis, as shown in Figure 5.3a. One would
expect the posterior estimates for the argument A(1)

H to be greater than A(2)
H for all equiv-

alent priors, and the results presented in Figures 5.3b, 5.3c, and 5.3d confirmed this.

5.4.1.2 Hypotheses and Information

While Figures 5.2 and 5.3 show that the proposed technique is promising for scenarios
with only two arguments with embedded hypotheses and no information arguments,
in reality, intelligence analysts must reason with all the available information in order
to evaluate the probability of hypotheses. As such, the remainder of results presented
within this subsection employed PrAFs which contained two or more information argu-
ments. The inducement probabilities of information arguments and their attacks were
altered to understand the impact that the acceptability of the information had on the
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0.5 0.5
1

1

A(1)
H

A(2)
H

(a) PrAF

(b) Algorithm 5.1 (c) Algorithm 5.2 (d) Algorithm 5.3

Figure 5.2: (a) A PrAF with two equally uncertain arguments containing hypotheses,
and the resulting posterior estimates computed using the prior relationship in Equation
5.37 and the likelihood output by (b) Algorithm 5.1, (c) Algorithm 5.2, and (d) Algo-
rithm 5.3, where N = 30,000.

0.5 0.1
1

1

A(1)
H

A(2)
H

(a) PrAF

(b) Algorithm 5.1 (c) Algorithm 5.2 (d) Algorithm 5.3

Figure 5.3: (a) A PrAF with two arguments with embedded hypotheses where A(1)
H was

more certain than A(2)
H , and the posterior estimates computed using the prior relation-

ship in Equation 5.37 and the likelihood output by (b) Algorithm 5.1, (c) Algorithm
5.2, and (d) Algorithm 5.3, where N = 30,000.
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posterior estimates of the hypotheses in question. Finally, all arguments with embed-
ded hypotheses were assigned an inducement probability of unity so that they were
always instantiated in the set of N induced argument frameworks.

To start, the first experiment with information featured two information arguments
with, again, a topological symmetry between them, as displayed in Figure 5.4a. The
posterior estimates for both hypotheses were approximately equal to all the human
agent’s priors, as demonstrated in Figures 5.4b, 5.4c, and 5.4d. This result is intuitive
due to the symmetry in the graph, which arises from the two uncertain information
arguments that attack both hypotheses with an equal uncertainty, and the symmetric
conflicts between arguments containing hypotheses.

The second experiment containing information considered whether altering the un-
certainty of information arguments alone affected posterior estimates. The inducement
probability of the information argument that attacked the first hypothesis was increased
from 0.5 to 0.9, as shown in Figure 5.5a, which, in turn, meant that the posterior esti-
mates for the argument A(2)

H were greater than A(1)
H for all equivalent priors, as shown

in Figures 5.5b, 5.5c, and 5.5d. An interesting point to note here is the difference be-
tween the graph plotted in Figure 5.5b and the ones in Figures 5.5c and 5.5d, which are
the same. The joint probability of the information is a constant which is cancelled out

1 10.5 0.5
1

1

0.5 0.5
A(1)

H

A(2)
H

A(i)
I ∈ IA

(a) PrAF

(b) Algorithm 5.1 (c) Algorithm 5.2 (d) Algorithm 5.3

Figure 5.4: (a) A PrAF with two certain arguments containing hypotheses and two
uncertain information arguments who attack both hypotheses with uncertainty. The
posterior estimates for the PrAF computed using the prior relationship in Equation 5.37
and the likelihood output by (b) Algorithm 5.1, (c) Algorithm 5.2, and (d) Algorithm
5.3, where N = 30,000.
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1 10.9 0.5
1

1

0.5 0.5
A(1)

H

A(2)
H

A(i)
I ∈ IA

(a) PrAF

(b) Algorithm 5.1 (c) Algorithm 5.2 (d) Algorithm 5.3

Figure 5.5: (a) A PrAF with two hypotheses and two information arguments, with one
is more certain than the other. The posterior estimates for the PrAF computed using
the prior relationship in Equation 5.37 and the likelihood output by (b) Algorithm 5.1,
(c) Algorithm 5.2, and (d) Algorithm 5.3, where N = 30,000.

when computing Bayes’ theorem in the case of Algorithm 5.2 and that same probability
does not feature in any of the outputs from Algorithm 5.3. The results from Algorithm
5.1 do, however, incorporate the acceptability of information and a hypothesis within
the joint probability in the numerator of Equation 5.20, which is why there is a smaller
difference between posterior estimates for both hypotheses in Figure 5.5b.

The third experiment on PrAFs with hypotheses and information assessed the im-
pact of changing the uncertainty of attacks from information arguments to arguments
containing hypotheses. To conduct this test, all information arguments were assigned a
probability of inducement of 0.5. The inducement probability of the information argu-
ment which attacked the first hypothesis was increased from 0.5 to 0.9, as per Figure
5.6a. Looking to Figures 5.6b, 5.6c, and 5.6d, the revised probability estimate for the
argument containing the second hypothesis A(2)

H was greater than A(1)
H for all equivalent

priors, which, again, is intuitive. Although both information arguments feature, on av-
erage, in the same number of induced argument graphs, the first A(1)

H and second A(2)
H

arguments containing hypotheses were attacked by information arguments in 45% and
25% of the induced graphs, respectively.

Increasing the inducement probability of attacks to a hypothesis produces a more
significant change in posterior estimates when compared to increasing the inducement
probability of information arguments which attack hypotheses, in the case of Algorithm
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1 10.5 0.5
1

1

0.9 0.5
A(1)

H

A(2)
H

A(i)
I ∈ IA

(a) PrAF

(b) Algorithm 5.1 (c) Algorithm 5.2 (d) Algorithm 5.3

Figure 5.6: (a) A PrAF with two hypotheses and two uncertain information arguments,
where there is more confidence in the attack from one of the information arguments
to A(1)

H . Posterior estimates for the PrAF computed using the prior relationship in
Equation 5.37 and the likelihood output by (b) Algorithm 5.1, (c) Algorithm 5.2, and
(d) Algorithm 5.3, where N = 30,000.

5.1. Compare the graphs in Figures 5.5a and 5.6a. While the posterior probability of
the second argument containing a hypothesis is greater than the first in both charts,
the change in the revised probabilities is much greater in Figure 5.6a, even though the
average number of times that the hypothesis was attacked was approximately the same.
This result can most likely be attributed to the assumption about dependence, in Equa-
tion 5.20, between information and a hypothesis. This result is slightly less instinctive
but it still agrees with intuition because, in Figure 5.5a, there will be more extensions of
induced frameworks that include the first argument containing the hypothesis A(1)

H and
the information arguments that attacks it. Whereas, in Figure 5.6a, the same informa-
tion arguments will be in fewer induced argument frameworks but, when it is included,
it will attack the first hypothesis 90% of the time; thus, both arguments will feature in a
smaller number of extensions over the set of induced graphs, and the joint probability
PS

PrAF(IA,A
(1)
H ) will be smaller in Equation 5.20 as a result.

The fourth experiment containing hypotheses and information studied increasing
the inducement probability of both an information argument and its attack to the first
argument with an embedded hypothesis, as shown in Figure 5.7a. As expected, the
posterior estimates for the second argument containing a hypothesis were greater than
the first for all equivalent priors, as demonstrated in Figures 5.7b, 5.7c, and 5.7d.
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1 10.9 0.5
1

1

0.9 0.5
A(1)

H

A(2)
H

A(i)
I ∈ IA

(a) PrAF

(b) Algorithm 5.1 (c) Algorithm 5.2 (d) Algorithm 5.3

Figure 5.7: (a) A PrAF with two hypotheses and two information arguments, where
one information argument and its attack to A(1)

H had a greater certainty. The posterior
estimates computed using the prior relationship in Equation 5.37 and the likelihood
output by (b) Algorithm 5.1, (c) Algorithm 5.2, and (d) Algorithm 5.3, where N =

30,000.

Asymmetrical topology between arguments containing hypotheses. Thus far, I
have considered PrAFs that possessed a topological symmetry between arguments con-
taining hypotheses. However, many of the argumentation graphs instantiated using
real-world data will be asymmetrical. To understand whether the proposed approach
could produce correct, reliable, and intuitive results in such settings, I present a frame-
work that contained three information arguments, as per Figure 5.8a. In this example,
the first argument containing a hypothesis A(1)

H is defended by two information argu-
ments: the first defender has an inducement probability equal to 0.5 and attacks the
second hypothesis A(2)

H ; and the second has a probability of inducement equal to unity
and is in symmetric conflict with another information argument that attacks A(1)

H . Re-
call from Section 5.3.3 that information arguments with a probability of inducement
equal to unity can be thought of as evidence because there is no uncertainty associated
with its existence. For the example displayed in Figure 5.8a, one would expect the pos-
teriors of the argument A(1)

H to be greater than the second A(2)
H for all equivalent priors

because an item of evidence comes to the first hypothesis’ defence, and the results in
Figures 5.8b, 5.8c, and 5.8d affirmed this notion.
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1 10.5 0.51
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1

0.5 0.50.5

0.5

A(1)
H

A(2)
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A(i)
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(a) PrAF

(b) Algorithm 5.1 (c) Algorithm 5.2 (d) Algorithm 5.3

Figure 5.8: (a) A PrAF with an asymmetry between A(1)
H and A(2)

H , arising from the
instantiation of three information arguments, where one of the information arguments
had an inducement probability equal to unity. The posterior estimates computed using
the prior relationship in Equation 5.37 and the likelihood output by (b) Algorithm 5.1,
(c) Algorithm 5.2, and (d) Algorithm 5.3, where N = 30,000.

The ratio of the likelihoods and the floating point underflow problem. The like-
lihoods conditioned on either the first A(1)

H or second A(2)
H argument containing a hy-

pothesis, as well as the ratio between those likelihoods, i.e. A(1)
H

A(2)
H

, for Figures 5.2 to 5.8

are presented in Table 5.1. Consider first the ratio of the likelihoods for Algorithms
5.1, 5.2, and 5.3. If the ratio was above (below) unity, then the likelihood conditioned
on the argument A(1)

H (A(2)
H ) was greater than A(2)

H (A(1)
H ). When the ratio approximately

equalled unity, both likelihoods conditioned on the arguments A(1)
H and A(2)

H were ap-
proximately equal. The ratios for all three algorithms were, roughly speaking, either
above, below, or equal to unity for the same figures in Table 5.1, which confirms that
the independence assumptions made in Algorithms 5.2 and 5.3 produced sensible out-
puts in line with the results from Algorithm 5.1. While the ratios of likelihoods were
approximately equal across all experiments for Algorithms 5.2 and 5.3, they were only
roughly equal in Figures 5.2, 5.3, and 5.4 for all three algorithms. All sets of ratios
from Algorithms 5.2 and 5.3 were greater than Algorithm 5.1 for the experiments in
Figures 5.5 to 5.8 because of the incorporation of the information and a hypothesis in
the joint probability within the numerator of Equation 5.20, implemented in Algorithm
5.1. However, the dependence between evaluated information and hypotheses in Al-
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gorithm 5.1 meant that the likelihoods tended towards zero with the inclusion of more
information arguments in PrAFs.

Now consider the floating point underflow condition and the solution to it provided
by Algorithm 5.3 and Equation 5.30, as discussed in Section 5.3.5.3. In Table 5.1,
the likelihoods become increasingly small for the outputs from Algorithms 5.1 and
5.2 in Figures 5.5 to 5.8, when compared to the results from Algorithm 5.3. In fact,
after the addition of a third information argument, in Figure 5.8, the likelihoods from
Algorithms 5.1 and 5.2 are the smallest. Algorithm 5.3, however, is able to compute an
approximately equal ratio of the likelihood, when compared with Algorithm 5.2, whilst
also ensuring that the likelihoods do not tend towards zero.

Thus, Table 5.1 confirms that the results from Algorithms 5.2 and 5.3, the algo-
rithms which assume independence, provide a good approximation of the set of likeli-
hoods and produce results in agreement with Algorithm 5.1. Moreover, Algorithm 5.3
should be capable of computing likelihoods for real-world scenarios, with much larger
PrAFs, because its estimates do not include the probability of information arguments
which could cause a floating point underflow condition.

Table 5.1: The likelihood conditioned on on either A(1)
H or A(2)

H and the ratio between

them, i.e. A(1)
H

A(2)
H

, for the results presented in Figures 5.2 to 5.8.

Figure

Likelihood Conditioned Using

Algorithm 5.1 Algorithm 5.2 Algorithm 5.3

A(1)
H A(2)

H
A(1)

H

A(2)
H

A(1)
H A(2)

H
A(1)

H

A(2)
H

A(1)
H A(2)

H
A(1)

H

A(2)
H

5.2 0.4963 0.5011 0.9904 0.5038 0.4955 1.0166 0.4971 0.4992 0.9957

5.3 0.9010 0.5003 1.8009 0.8993 0.4996 1.7999 0.9020 0.4976 1.8128

5.4 0.0422 0.04191 1.007 0.0615 0.0622 0.9882 0.2482 0.2516 0.9865

5.5 0.1007 0.1357 0.7428 0.1124 0.2013 0.5583 0.2498 0.4516 0.5530

5.6 0.0113 0.0737 0.1539 0.0638 0.1123 0.5683 0.2535 0.4468 0.5673

5.7 0.0565 0.2437 0.2318 0.1148 0.3671 0.3126 0.2479 0.8101 0.3060

5.8 0.0091 0.0053 1.7109 0.0420 0.0207 2.0349 0.2507 0.1268 1.9766

Posterior Estimates of Hypotheses Over Time. Although producing a refined prob-
abilistic estimate about the probability of hypotheses is important, intelligence analysts
may be required to understand how such estimates have evolved over time. To show
that the proposed algorithms are capable of producing posteriors throughout time, Fig-
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(a) (b)

Figure 5.9: Posteriors overtime, where the priors were equal to (a) 0.5 across all time
steps – i.e., Fig. 1.2 to Fig. 1.8 – and (b) 0.5 in the first time step – i.e. Fig. 1.2 – and
then priors were equal to the previous posterior estimate, across all the remaining time
steps – i.e., Fig. 1.3 to Fig. 1.8.

ure 5.9 displays posterior estimates computed using two different priors and the like-
lihoods from the results in Figures 5.2 to 5.8, which was assumed to capture how
likelihoods might change over time.

5.4.2 Operation Fortitude-South

A high performance computing cluster2 and two parallel implementations of Algorithm
5.3 were required to obtain results for the Operation Fortitude-South argumentation
framework. The method of parallelisation, strong scaling speedup, and weak scaling
efficiency is discussed in more detail in Section 5.4.2.1.

To ensure that results could be computed from the Operation Fortitude-South argu-
mentation framework, the arguments containing hypotheses and the inducement proba-
bility of each argument and relation needed to be defined. Recall from the introduction
to Part II that the two hypotheses were:

• Conc(A(Nor)
H ): The main invasion should land in Normandy;

• Conc(A(PdC)
H ): The main invasion should land in Pas de Calais.

2The high performance computing cluster employed was called Scafell Pike: https://www.hartree.
stfc.ac.uk/technologies/high-performance-computing/ (Accessed on: 02.10.2024).

https://www.hartree.stfc.ac.uk/technologies/high-performance-computing/
https://www.hartree.stfc.ac.uk/technologies/high-performance-computing/
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Arguments containing hypotheses and attacks between them were assigned an in-
ducement probability of unity so that both hypotheses featured in all induced graphs.
All other arguments were assumed to be information arguments, as per Definition 5.8.
The probability of inducement was set equal to 0.5 for all information arguments and
attacks emanating from them. The semantics of choice was complete semantics due to
the speed at which complete extensions can be computed on larger frameworks. The
number of trials was equal to (N =) 520× 106. Here, the reader should note that the
reason for the aforementioned number of trials N was because the counts output from
the speedup and efficiency tests were combined to provide a better approximation.
The likelihoods for the two arguments with embedded hypotheses for the Operation
Fortitude-South argumentation framework are presented in Table 5.2. The posterior
estimates are presented in Figure 5.10 and were computed using the same prior rela-
tionship defined in Equation 5.37 in Section 5.4.1.

Table 5.2: The likelihoods for the Normandy and Pas de Calais hypotheses and the
number of trials employed in the approximation.

Likelihood Number of Trials, N

P(IA,H
(Nor−)
A |A(Nor)

H ) 0.2499
520×106

P(IA,H
(PdC−)
A |A(PdC)

H ) 0.2500

Figure 5.10: The posterior estimates for the Operation Fortitude-South argumentation
framework. Both arguments containing hypotheses and attacks between them had a
probability of inducement of unity. All other arguments were assumed to be informa-
tion arguments, where information arguments and their attacks had inducement proba-
bilities equal to 0.5. The number of trials was (N =) 520×106.
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Looking to the graph of posterior estimates in Figure 5.10. The posterior proba-
bilities were approximately equal for all equivalent priors because there was a negli-
gible difference between both the likelihoods presented in Table 5.2. As I describe in
Appendix B, Operation Fortitude-South was so successful that Hitler believed the Nor-
mandy landings were a diversionary attack for an entire month after D-Day occurred
[66, p. 15]. Although the Axis’ command had presumably conducted their own analy-
sis, using a trusted set of sources and analysts, and deemed Pas de Calais to be the most
likely invasion site, as we now know, this assessment was in fact wrong. Had the Axis’
command possessed a tool that was able to refine their prior probabilistic judgements
on all the available information and the defeat of all other hypotheses, they may have
arrived at the correct conclusion, potentially changing the outcome of World War Two.

One further, interesting point to note about the results in Table 5.2 and Figure 5.10
is that they do not encompass all the likelihoods that could be approximated and used
in the computation of the posterior probabilities of the two hypotheses. The reason
for this becomes apparent when one studies the conclusions of the arguments, namely
Arg 34 to Arg 52, in Appendix B.4. The arguments and sub-arguments used to test the
proposal made in this chapter were instantiated using the ASPIC+ framework which,
when translated from the AIF to ASPIC+ to a Dung argumentation framework, can
result in a number of arguments with the same conclusion. Although those arguments
possess the same hypothesis embedded as a conclusion, they are supported by different
sub-arguments and therefore, they are different arguments. Future work should employ
the algorithms proposed in this chapter and consider how to combine the likelihoods
for arguments with the same hypothesis embedded within its conclusion to produce
a global posterior estimate for a hypothesis when using real-world data. However, it
should be noted that combining such estimates should be done with care because of
the juxtaposition between the rationale underpinning the field of probability and the
extensions or labellings output by a semantics within the computational argumentation
literature. For instance, in argumentation, one might say that a conclusion is stronger if
one is able to instantiate more arguments with that proposition and, as a result, more of
those arguments (with that same conclusion) might be found to be acceptable. On the
contrary, if one were using probability theory to simply multiply likelihoods or poste-
riors, then stronger arguments (with more reasons to believe them) would be penalised
for being many in number. One sensible approach might be to calculate likelihoods and
posteriors for all arguments with embedded hypotheses and provide all those results to
the intelligence analyst to avoid information loss through aggregation.
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5.4.2.1 Parallel Implementations of Algorithm 5.3, Strong Scaling Speedup, and
Weak Scaling Efficiency

Algorithm 5.3 is, what is referred to as, embarrassingly parallel because PrAFs em-
ploy a Monte Carlo approximation approach in order to compute the probability of sets
of arguments. As such, the instantiation of N induced argument graphs was indepen-
dent. This meant that the for loop, in Lines 3 to 6 of Algorithm 5.3, could be spread
across a given number of compute nodes, using distributed memory parallelism, and
the resulting counts gathered and summed up afterwards.

Algorithms 5.5 and 5.6 are adaptations of Algorithm 5.3 which employed a divide-
and-conquer approach to parallelisation to study strong and weak scaling, respectively,
as well as to obtain results for the Operation Fortitude-South example. To understand
whether Algorithms 5.5 and 5.6 were in fact faster than Algorithm 5.3, its sequential
counterpart, a series of experiments that measured strong scaling speedup and weak
scaling efficiency were conducted.

Experimental Setup. The results presented in this subsection were obtained on a
cluster of 846 2x 128 Intel Xeon Gold E5-61423 CPUs, each with 16 cores, a clock
speed of 2.5GHz (up to 3.7GHz), and 192Gb of RAM. Algorithms 5.5 and 5.6 were
implemented in Python [232] and parallelised using mpi4py [62], a widely employed
Python package for parallelisation of codes using distributed memory architecture. An
example of the distributed memory architecture employed in the execution of Algo-
rithms 5.5 and 5.6 is presented in Figure C.1 in Appendix C.2. The experiments which
measured strong scaling speedup and weak scaling efficiency employed a power-of-
two number – i.e. 1, 2, 4, ... 256 – of CPUs from the cluster. An interesting point to
note is that while high performance computing clusters are capable of executing hybrid
distributed-shared memory parallelism, this approach was not implemented and is left
for future work.

Strong scaling speedup. In [6], Amdahl argued that the speedup of an algorithm
is limited by the fraction of the code which cannot be parallelised and must be run
in serial. Strong scaling speedup is governed by Amdahl’s law such that it measures
how the speedup changes with a varying number of processors for a fixed problem
size which, in the context of this chapter, is the number of trials N. Algorithm 5.5
employs distributed memory parallelism to compute the likelihood in Equation 5.30

3https://ark.intel.com/content/www/us/en/ark/products/120487/

intel-xeon-gold-6142-processor-22m-cache-2-60-ghz.html (Accessed on: 02.10.2024)

https://ark.intel.com/content/www/us/en/ark/products/120487/intel-xeon-gold-6142-processor-22m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120487/intel-xeon-gold-6142-processor-22m-cache-2-60-ghz.html
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for a constant number of trials.

Algorithm 5.5: A parallel implementation of Algorithm 5.3 that employs a
distributed memory architecture and a fixed problem size N.

Input : A PrAF = (A,PA,R,PR);
A set of arguments with embedded hypotheses HA;
A semantics S;
A number of processors P;
A number of trials N.

Output: A list of |HA| likelihoods PS
PrAF (IA,¬HA|AH ) for each argument with an embedded hypothesis A(i)

H .
1 do in parallel
2 AH =

[
A(1)

H , . . . ,A(n)
H

]
← HA // Convert the set HA to an indexed array AH

3 CH ← zeros(CH , |AH |) // Create an array of zeros, of size |AH |, to count

the number of times an argument containing a hypothesis was

acceptable

4 for 1 to N
P

do
5 G I ← INDUCE AF(PrAF) // Algorithm C.1 in Appendix C.1

6 forall i ∈ AH do
7 C

(i)
H = SEMANTIC EVALUATION FUNCTION(G I ,A(i)

H ,S,C
(i)
H ) // Algorithm C.2 in

Appendix C.1

8 Send CH to main processor P1

9 if Processor is P1 then
10 Receive CH and sum counts belonging to the same argument containing a hypothesis
11 Continue with Lines 7 to 18 in Algorithm 5.3 to compute the likelihood conditioned on each argument

containing a hypothesis

Strong scaling speedup is calculated as

Strong scaling speedup =
t(1)
t(P)

(5.38)

where t(1) and t(P) are the execution times for, respectively, one and P processors, for
a fixed problem size of N trials.

In a perfect world, the speedup and execution time should, respectively, be propor-
tional and inversely proportional to the number of processors employed in the paral-
lelised algorithm, such that

Ideal speedup = P and ideal execution time =
t(1)
P

, (5.39)

where P is the number of processors.
However, in real applications, such ideal speedups and execution times are rarely

possible because of the overhead of parallelisation which arises from constraints, such
as the cost of communication between nodes across a network.
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The execution time and strong scaling speedup results for experiments on Algo-
rithm 5.5 with a fixed problem size are presented in Figure 5.11 and Table 5.3. The
execution time decreased and speedup increased with an increasing number of proces-
sors. The results confirmed good scaling when P= 1,2,4,8, and 16, acceptable scaling
when P = 32 and 64, and poor scaling when P = 128 and 256. This was most likely
caused by the decreased number of trials that each processor was required to complete
– i.e. N

128 or N
256 per processor – which, in turn, decreased each processor’s workload

and execution time, whilst also increasing the communication cost across the network,
causing a bottleneck. It’s worth mentioning that the number of trials – i.e., N = 1×106

– was quite small and increasing the fixed problem size by a factor of, for example, ten,
twenty, etc, would increase the strong scalability of the experiments with 128 and 256
processors.

(a) (b)

Figure 5.11: (a) The execution time and (b) strong scaling speedup for Algorithm 5.5
for an increasing number of processors, where the number of trials was N = 1×106.

Weak scaling efficiency. While Amdahl’s law provides the upper bound of speedup
for a fixed problem size, the benefit of parallelising and executing algorithms on high
performance computing clusters is that the size of a problem can be increased. As
Gustafson noted in [92], the size of a problem scales with the amount of available re-
sources. Weak scaling measures parallel performance when the problem size increases.
Both the number of processors and the problem size are increased, whilst also ensuring
that each processor has a constant workload. Algorithm 5.6, again, employs distributed
memory parallelism to compute the likelihood in Equation 5.30 for an increasing prob-
lem size, where the number of trials is proportional to the number of processors.

Weak scaling efficiency is computed in a similar manner to the strong scaling
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Table 5.3: The execution time and strong scaling speedup for a fixed problem size.

Processors P Execution Time (s) Speedup Number of Trials N

1 6,696 1.00

1×106

2 3,432 1.95
4 1,822 3.68
8 1,005 6.66
16 445.3 15.0
32 286.5 23.4
64 129.8 51.6

128 118.3 56.6
256 128.9 51.9

speedup, such that

Weak scaling efficiency =
t(1)
t(P)

, (5.40)

where the efficiency is a real number within the unit interval.
As the workload is held constant across P processors, the ideal efficiency and exe-

cution time should, respectively, be equal to unity and the time taken for one processor
to complete N trials, as shown in Equation 5.41.

Ideal efficiency = 1 and ideal execution time = t(1). (5.41)

The weak scaling execution time and efficiency for experiments on Algorithm 5.6
with an increasing problem size are presented in Figure 5.12 and Table 5.4. The execu-
tion time increased and efficiency decreased with an increasing number of processors
and trials. The results displayed good efficiency when P= 1,2,4,8,16 and 32, accept-
able efficiency when P = 64, and poor efficiency when P = 128 and 256. The reason
for these results is two-fold. First, as previously mentioned, increasing the number of
processors, increased the communication costs across the network, even for the almost
completely parallel implementation presented in Algorithm 5.6. Second, increasing the
number of trials N as a function of the number of processors P, increased the chance
of instantiating a more complex induced argument graph which was computationally
harder to evaluate using a semantics. In Algorithm 5.6, work was distributed evenly
across the set of processors. Each processor was assigned the same workload which
meant that if a processor instantiated a number of more challenging induced frame-
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works, then the main processor P1 would be required to wait until that processor com-
pleted its set of tasks. One solution to this problem would be to implement dynamic
task allocation, where nodes are only assigned more work once they have completed
tasks. However, this would, again, only increase the amount of communication dur-
ing runtime and increase execution times. The benefit of employing either static or
dynamic work distribution in Algorithms 5.5 and 5.6 is a task left for future work.

Algorithm 5.6: A parallel implementation of Algorithm 5.3 that employs a
distributed memory architecture and an increasing problem size N×P.

Input : A PrAF = (A,PA,R,PR);
A set of arguments with embedded hypotheses HA;
A semantics S;
A number of processors P;
A number of trials N.

Output: A list of |HA| likelihoods PS
PrAF (IA,¬HA|AH ) for each argument with an embedded hypothesis A(i)

H .
1 do in parallel
2 AH =

[
A(1)

H , . . . ,A(n)
H

]
← HA // Convert the set HA to an indexed array AH

3 CH ← zeros(CH , |AH |) // Create an array of zeros, of size |AH |, to count

the number of times an argument containing a hypothesis was

acceptable

4 for 1 to N do
5 G I ← INDUCE AF(PrAF) // Algorithm C.1 in Appendix C.1

6 forall i ∈ AH do
7 C

(i)
H = SEMANTIC EVALUATION FUNCTION(G I ,A(i)

H ,S,C
(i)
H ) // Algorithm C.2 in

Appendix C.1

8 Send CH to main processor P1

9 if Processor is P1 then
10 N = N×P // Calculate the total number of trials

11 Receive CH and sum counts belonging to the same argument containing a hypothesis
12 Continue with Lines 7 to 18 in Algorithm 5.3 to compute the likelihood conditioned on each argument

containing a hypothesis
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(a) (b)

Figure 5.12: (a) The execution time and (b) weak scaling efficiency for Algorithm 5.6
for an increasing number of processors, where the number of trials was N = P×106.

Table 5.4: The execution time and weak scaling speedup for an increasing problem
size.

Processors P Execution Time (s) Efficiency Number of Trials N

1 6,621 1.00 1×106

2 6,845 0.97 2×106

4 6,848 0.97 4×106

8 6,917 0.96 8×106

16 6,985 0.95 16×106

32 7,224 0.92 32×106

64 8,472 0.78 64×106

128 14,778 0.45 128×106

256 30,048 0.22 256×106

5.5 Summary and Future Work

In this chapter, I have taken the ASPIC+ framework, previously outlined in Section
2.3.2.1, and Pherson and Heuer Jr.’s definition of a hypothesis, introduced in Chapter
1, and defined arguments with embedded hypotheses and arguments containing infor-
mation only, in terms of structured argumentation. I then combined those definitions
with PrAFs and a human agent’s prior beliefs, using Bayes’ theorem, in order to pro-
vide a revised probability that incorporates the outputs from an intelligence analysis
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and the acceptability of the available information and defeat of all other hypotheses.
Four algorithms were proposed. The first three algorithms compute the likelihood of
the acceptability of information and the defeat of all other hypotheses. However, they
do this using different assumptions about the dependence between evaluated informa-
tion arguments and the argument which contains the hypothesis of interest. The fourth
algorithm takes the output from the first three and computes the probability of a hy-
pothesis given the information and defeat of all other hypotheses. I then provided a
set of abstract examples to show how the topology of a PrAF, the inducement proba-
bilities of arguments and attacks, and an intelligence analyst’s prior beliefs affect pos-
terior estimates. The chapter concluded with results from experiments on the Opera-
tion Fortitude-South argumentation framework – which suggested the Axis’ command
should have considered the Normandy and Pas de Calais hypotheses as equally likely,
given the information that was available – to demonstrate that the approach could be
employed in practice. As the results from the Operation Fortitude-South scenario were
acquired using a high performance computing cluster, I also presented some strong
scaling speedup and weak scaling efficiency results, for two parallel implementations
of one of the proposed algorithms. The algorithms proposed in this chapter are intended
as a proof of concept to provide support for intelligence analysts by revising their prior
beliefs using the outputs from probabilistic argumentation. The refined probabilities
output by the algorithms are not meant to replace the analyst’s analysis, but should act
as a guide and ensure that they have made rational, probabilistic assessments prior to
the dissemination of their findings to stakeholders and decision makers, in accordance
with the suggestion made by Zlotnick [251] in Section 2.4.2.

With regard to future work, the are many avenues. The incorporation of the argu-
mentation scheme for the representation of hypotheses in Chapter 3 with the formalism
presented in this chapter, for the Operation Fortitude-South scenario, is an obvious ex-
tension. Moreover, extending the scheme proposed in Chapter 3 in order to include
the joint probability of defeat of all other hypotheses might provide some interest-
ing insights about an analyst’s reasoning. Investigating scenarios with more than two
hypotheses would also be interesting. Although I assume that evidence can be repre-
sented through an information argument with an inducement probability equal to unity,
relaxing the restriction to the ASPIC+ framework so that it includes both strict and
defeasible rules is also intriguing. Another attractive possibility could be to compute
posteriors using two different inducement probabilities for each argument and relation
within a PrAF, corresponding to the distinct numeric ranges in the Probability (or Un-
certainty) Yardstick, as introduced in Section 2.1.4, in order to provide analysts with an
uncertainty bound on the posteriors output by the technique in this chapter. A further,
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interesting idea to extend this work would be to employ Dung’s original argumentation
framework [70] in the calculation of the likelihood so as to reduce the computational
complexity of the proposed approach. Finally, as the proposed algorithms are intended
for use within real-world scenarios, studying both static and dynamic task allocation,
as well as hybrid distributed-shared memory parallelism, is important.

In this chapter, a method of prior probability refinement for hypotheses was pro-
posed. In the next chapter, Dung’s abstract argumentation framework [70] is employed
for sensitivity analysis in order to provide benefit to analysts by using the rational,
coherence of computational argumentation to identify diagnostic arguments.



Chapter 6

On Diagnostic Arguments in
Abstract Argumentation

In this chapter, I draw upon the notion of sensitivity analysis which is used in step
seven of the ACH [101], as discussed in Section 2.1.5.2, and employ abstract argu-
mentation for this task. I set out a novel technique, called the Diagnostic Argument

Identifier, which can identify diagnostic arguments. The algorithm defined to do this
task employs a labelling-based approach in order to compute acceptance probabili-
ties between dichotomous sets of arguments, which are then used in the calculation
of change in mutual information across partitions of argument labels, measured be-
fore and after the removal of an argument of interest. I present a running example for
an abstract argumentation framework to show how the method works and a software
application to demonstrate that the results are easily obtainable and provide useful in-
sights. To confirm that the technique can be extended to real-world scenarios, I present
results obtained from the Operation Fortitude-South argumentation framework, which
was introduced at the beginning of Part II. These results were acquired through use
of a high performance computing cluster and as such, I present a hybrid, distributed-
shared memory parallel implementation of the algorithms, and some strong scaling
speedup results as well. I argue that the proposed algorithmic approach systematises
and reduces the subjectivity of sensitivity analysis; thus, yielding benefits to intelli-
gence analysts – or any other expert working within a decision or deliberation setting
– who need to objectively reevaluate the dependence of their set of conclusions on ob-
served data present within an analysis. The chapter concludes with a summary and
discussion about whether the approach is capable of aiding intelligence analysts in the

164
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task of sensitivity analysis, as well as suggesting avenues for future work.

6.1 Introduction

As discussed in Chapter 2, intelligence analysts possess a number of structured analyt-
ical techniques [173] which guide them in the evaluation of both complex and novel
scenarios, during the analysis phase of the Intelligence Cycle. One such tool is the
ACH [101], where one of the most crucial steps, according to Heuer Jr., is sensitiv-
ity analysis. Recall that during sensitivity analysis, step seven of the ACH in Section
2.1.5.2, analysts are tasked with the following:

“Analyse the sensitivity of the conclusions to identify how dependent the

likelihood of each hypothesis is on the items of information, evidence, and

assumptions.”

Both Heuer Jr. in [101] and Pherson and Heuer Jr. in [173] advise the analyst to
sequentially remove each row entry from the ACH matrix in order to establish whether
the likelihood of their conclusions change as result. In this context, a diagnostic data
point is one where its removal from the analysis changes the conclusions drawn. How-
ever, there are a couple of issues with this approach, both of which arise from the fact
we are humans, with cognitive biases, who can potentially fall victim to a myriad of
intuitive traps and lapses in judgement. The first issue pertains to the ACH itself. For
example, as discussed in Section 2.4.3, in [152], Murukannaiah et al.’s comparison
of the ACH with their technique, Arg-ACH, confirmed that participants who used the
standard ACH evaluated hypotheses using individual row entries. As I discussed in
Chapter 2, a row entry, when considered in isolation, might not provide support for, or
conflict with, a hypothesis. However, when row entries are combined, the analyst may
identify such supports or conflicts, and the scheme proposed for the representation of
hypotheses in Chapter 3 draws upon this idea. This notion is the same for sensitiv-
ity analysis also. The removal of a row entry from the ACH may not seem to change
the likelihood of a hypothesis because the likelihood is computed using a coarse count
which does not include the uncertainty in information, evidence, and assumptions, and
the uncertainty associated with their sources. Moreover, as I demonstrate in Chapter 5,
row entries can attack each other such that they indirectly support or attack a hypoth-
esis. Thus, simply removing a row entry from the ACH does not capture these subtle
changes in the acceptability of row entries, which alter the likelihood of hypotheses.

The second problem is that while analysts may remove a row entry from the ACH
matrix in accordance with the procedure, it is incredibly difficult for a human to dis-
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count an item of information and act as though it never existed. The availability heuris-

tic, proposed by Tversky and Kahneman, is where the likelihood of an event is deter-
mined “by the ease with which instances or associations could be brought to mind”
[218, p. 208]. Even though a given row entry is physically removed from the ACH
matrix, that same row entry may be present within the analyst’s mind and therefore,
undoubtedly impact their assessment of whether that entry was diagnostic.

Although the ACH does its best to formalise hypothesis evaluation, sensitivity anal-
ysis is a cognitively challenging task for the analyst because it is asking them to do
something which they are not predisposed to do. Thus, the process of sensitivity analy-
sis, in its current state, could fall victim to cognitive biases and an analyst’s subjectivity.

To combat those limitations, this chapter makes two contributions, which are listed
below:

• The first is an evaluation-based approach to probabilistic argumentation, which
uses the set of labellings discovered by a semantics, to calculate joint and marginal
argument acceptance probabilities of partitions of arguments and their labels,
over a set of labellings.

• The second is a novel technique, called the Diagnostic Argument Identifier (DAI),
comprised of two computational tasks that apply the equations from the first con-
tribution to quantify diagnosticity scores of arguments within abstract argumen-
tation frameworks. The change in a framework’s evaluation is quantified after
the sequential removal of each argument, emulating the task of sensitivity anal-
ysis. The technique should alleviate the reliance on human effort and reduce
cognitive biases, through use of an algorithmic approach.

The remainder of the chapter is structured as follows. In Section 6.2, Dung’s ab-
stract argumentation frameworks are briefly reintroduced. In Section 6.3, the two con-
tributions of the chapter are made. The first contribution, the method for calculating
the joint and marginal probability of partitions of argument labels, is described in Sec-
tion 6.3.1. The calculation of the distribution of change in mutual information across
partitions of argument labels is explained in Section 6.3.2. The way in which ab-
stract argumentation was employed for sensitivity analysis is outlined in Section 6.3.3.
Sections 6.3.1, 6.3.2, and 6.3.3 include a running example that demonstrates the ap-
proach. The computational approach for the DAI, the second contribution, is made
concrete in the algorithms proposed in Section 6.3.4. In Section 6.4, results from the
DAI are presented and discussed for: the arguments in the running example, in Sec-
tion 6.4.1; a software application, in Section 6.4.2; and the Operation Fortitude-South
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argumentation framework, in Section 6.4.3. A heuristic which rendered the parallel
implementations of the DAI capable of producing results for the real-world example
is described in Section 6.4.3.1, and some strong scaling speedup results are presented
in Section 6.4.3.2. Work related to the DAI is considered in Section 6.5. The chapter
concludes, in Section 6.6, with a summary of the contribution and some avenues for
future research.

6.2 Preliminaries

Recall that a Dung abstract argumentation framework G was defined in Section 2.3.1
as a pair (A ,R) which contains a set of arguments A and a binary attack relation R ⊆
A ×A . The argument a1 is said to attack a2 if and only if (a1,a2)∈R and a1,a2 ∈A .
As per Definitions 2.2 and 2.3, the semantics compute admissible sets of arguments that
have, respectively, two characteristics: conflict-freeness; and acceptability.

The algorithm proposed in this chapter employs labelling-based methods and pre-
ferred semantics to enable the computation of probabilities from semantic evaluation.
Recall the definition of a complete labelling from Definition 2.6 in Section 2.3.1. As
per Definition 2.7 in the same section, a labelling is preferred if and only if it is a com-

plete labelling with a maximal (with respect to set inclusion) set of arguments labelled
IN.

6.3 Diagnostic Argument Identifier

In this section, the DAI is formally introduced. Two contributions are made, namely:
the labelling-based argument acceptance probability equations for partitions of argu-
ment labels, derived from a set of probability spaces; and the DAI, a technique capable
of identifying the most critical arguments within a Dung argumentation framework.
To make the approach concrete, four algorithms are presented in Section 6.3.4. Algo-
rithms 6.1 and 6.2 are, respectively, serial and parallel implementations that compute
the distribution of mutual information across subsets of argument labels in an initial ar-
gumentation framework, and they are presented in Section 6.3.4.1. Algorithms 6.3 and
6.4 are, again, serial and parallel implementations that compute the change in mutual
information after the sequential removal of each argument from a framework, and they
are presented in Section 6.3.4.2.
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6.3.1 Probability Spaces

Consider first the probability spaces that can be derived from the labellings of a Dung
argumentation framework. Let G = (A ,R) be an argumentation framework contain-
ing N arguments A and |R| relations R. The set of arguments is ordered using a
function f (A ) : A → A, where A = (a1, ...,aN) is an ordered vector of arguments. It
is assumed there is a function g(A) : A→LM which assigns all arguments ai ∈ A to a
set of labelling vectors, such that

LM = {Li}M
i=1 (6.1)

where M is the number of labelling vectors, and Li is the i-th labelling vector containing
N argument labels, such that Li = (l1, ..., lN), where l j ∈ Li is the label of the argument
a j ∈ A and l j ∈ LAB, such that LAB = {IN,OUT,UND}.

The set of arguments A is partitioned into two sets, named Aφ and Aψ , using
Definition 6.1.

Definition 6.1 For an argumentation framework G = (A ,R), let the partitions of A

be Aφ ⊆A and Aψ ⊆A such that they are closed under union, where Aφ ∪Aψ =A ,
and intersection, where Aφ ∩Aψ = /0. The dichotomous sets Aφ and Aψ are comple-
ments such that A c

φ
= A \Aφ and A c

ψ = A \Aψ , where A c
φ
= Aψ and A c

ψ = Aφ .

Both subsets Aφ and Aψ are mapped to argument vectors through the function f ,
such that

f (Aφ ) : Aφ → Aφ = {(a1, ...,a|Aφ |) | ∀ai ∈A where ai ̸∈Aψ} and (6.2)

f (Aψ) : Aψ → Aψ = {(a1, ...,a|Aψ |) | ∀a j ∈A where a j ̸∈Aφ}. (6.3)

The partitioned vectors Aφ and Aψ are mapped to corresponding sets of labelling
vectors through the same function g, such that g(Aφ ) : Aφ →Lφ and g(Aψ) : Aψ →
Lψ , respectively. It follows that

Lφ = {Lφ ,i}
Mφ

i=1 and (6.4)

Lψ = {Lψ,i}
Mψ

i=1 (6.5)

where Mφ ≤M, Mψ ≤M, Lφ ⊆LM , Lψ ⊆LM , and Lφ ,i and Lψ,i are the i-th labelling
vectors for Aφ and Aψ , respectively.

Example 6.1 Consider a Dung argumentation framework G , as shown in Figure 6.1,
with arguments A and relations R, such that

A = {p,q,r,s, t} and
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R = {(q, p),(r,q),(s,q),(r,s),(s,r),(r, t),(t,r),(s, t),(t,s)}.

The evaluation of the framework G , under preferred semantics, produces three la-
bellings, as shown in Table 6.1. Following Definition 6.1, the set of arguments A

is split into dichotomous sets, where Aφ = {p,q} and Aψ = {r,s, t}. Using the func-
tion f , the sets of arguments A , Aφ and Aψ are mapped to the argument vectors
A = (p,q,r,s, t), Aφ = (p,q) and Aψ = (r,s, t), which enables the creation of sets of la-
belling vectors LM , Lφ and Lψ , as shown in Equations 6.6, 6.7 and 6.8, respectively.

q

r

s

p t

Figure 6.1: Example of a Dung argumentation framework G .

Table 6.1: The preferred labellings of the framework displayed in Figure 6.1.

Labellings, L (A ) p q r s t

L1(A ) IN OUT IN OUT OUT

L2(A ) IN OUT OUT IN OUT

L3(A ) OUT IN OUT OUT IN

g(A) : A→LM =

{


IN

OUT

IN

OUT

OUT

 ,


IN

OUT

OUT

IN

OUT

 ,


OUT

IN

OUT

OUT

IN


}

(6.6)

g(Aφ ) : Aφ →Lφ =

{(
IN

OUT

)
,

(
OUT

IN

)}
(6.7)

g(Aψ) : Aψ →Lψ =

{ IN

OUT

OUT

 ,

OUT

IN

OUT

 ,

OUT

OUT

IN

} (6.8)
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Let (Ωφ ,Fφ ,Pφ ) and (Ωψ ,Fψ ,Pψ) be probability spaces, where Ωφ and Ωψ are
sample spaces, Fφ and Fψ are event spaces, and Pφ and Pφ are functions such that
Pφ : Fφ → (0,1] and Pψ : Fψ → (0,1] for the partitions Aφ and Aψ , respectively. This
chapter considers two random variables, Xφ and Xψ , that are real-valued measurable
functions, Xφ : Ωφ → R and Xψ : Ωψ → R, that map results from the sample spaces,
Ωφ and Ωψ , to numerical values; thus, modelling a random experiment which is the set
of labellings output from semantic evaluation of an argumentation framework.

Definition 6.2 (Random Vector). Let (Ω,F ,P) be a probability space where the
random vector X : Ω→ R is a measurable function. The random vector X contains
random variables X = (Xφ ,Xψ) defined on two probability spaces Xφ : Ωφ → R and
Xψ : Ωψ → R.

Before semantic evaluation and given the constraints of argumentation, the number
of possible elements (or labelling vectors) in the sample space Ω is the number of
unique combinations of argument labels, such that

|Ω|= |LAB|N (6.9)

where |Ω| is the number of potential elements in the sample space Ω, N is the number
of arguments, and |LAB| is either two or three, depending on whether a user employs
two- or three-valued semantics. After semantic evaluation, the set of possible labelling
vectors is reduced to a set containing M labelling vectors that were observed, such that
Ω = LM and |Ω|= M.

The spaces (Ωφ ,Fφ ,Pφ ) and (Ωψ ,Fψ ,Pψ) are measurable ones, where Fφ ⊗Fψ

is the smallest product σ -field of potential subsets of Ωφ ×Ωψ ⊇ Ω, containing all
events of the form Lφ ,i×Lψ, j where Lφ ,i ∈Fφ and Lψ, j ∈Fψ . The event space F is
a σ -algebra which contains the powerset of all elements in the product space Fφ⊗Fψ ,
including the empty set and the set of all events. However, after semantic evaluation,
the set of combinations of labelling vectors for each partition is, again, reduced to sets
of realised events, where Lφ ⊗Lψ ⊂Fφ ⊗Fψ is the smallest subset of events from
which non-zero probabilities are calculated, and Lφ and Lψ are shown in Equations
6.4 and 6.5, respectively.

The observation of the i-th outcome is denoted x(i) ∈ Ω which is the i-th labelling
vector x(i) ∈ LM , such that x(i) = (x(i)

φ
,x(i)ψ ) = (Lφ ,i,Lψ,i) ∈ Ω. The outcomes from

different partitions and labellings can be observed, where x(i)
φ
,x( j)

ψ ∈Ω are the i-th and
j-th labelling vector for the partitions Aφ and Aψ , respectively, where i ̸= j. With a
slight abuse of notation, the probability of realising the i-th and j-th labelling vector
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of Aφ and Aψ in the sample space Ω is denoted as P(x(i)
φ
) or P(x( j)

ψ ), which refers to

P(Xφ = x(i)
φ
) or P(Xψ = x( j)

ψ ), respectively.
There are two probabilities that concern the calculation of mutual information be-

tween partitions of argument labels, namely the joint and marginal probabilities of
labels of arguments in each segment.

6.3.1.1 Joint Probability

The joint probability of the observation of both partitions’ argument labels, across the
i-th and j-th outcome in the sample space, is computed through a normalised count,
such that

P(x(i)
φ
, x( j)

ψ ) =
1
M

M

∑
k=1

I
x(i)

φ
=x(k)

φ
;x( j)

ψ =x(k)ψ

(6.10)

where IA returns a value of unity if and only if A is true.
Due to the distinct nature of labellings, there will only be one labelling vector in

the sample space Ω that contains the same arrangement of argument labels as the la-
bels for arguments in each partition. Thus, there will be M pairs of labellings vectors
which produce non-zero joint probabilities across the product space of realised argu-
ment labels in each segment. Consider a list M containing |M | distinct i- j pairs,
where |M | = Mφ ×Mψ , from the observed product space Lφ ⊗Lψ , such that we
compute |M | joint probabilities. Each joint probability is the reciprocal of the number
of labellings, if and only if both observed outcomes feature in the same labelling vector
across the sample space Ω, and for any other i- j pair the probability is zero, as shown
in Equation 6.11.

P(x(i)
φ
, x( j)

ψ ) =

 1
M , iff ∃m ∈ {1, . . . ,M} such that i = i(m) and j = j(m)

0, otherwise.
(6.11)

It follows that the list M contains M i- j pairs of labelling vectors with a joint
probability greater than zero, corresponding to the number of times that the sample
space Ω contained those distinct segments of argument labels, or outcomes x(m) =

(x(m)
φ

,x(m)
ψ ) ∈Ω.

Example 6.2 Continuing the running example. The sets of labelling vectors Lφ and
Lψ , presented in Equations 6.7 and 6.8, were employed to compute the joint proba-
bility of labels for arguments in each partition. The product space Lφ ⊗Lψ contains
|M |= Mφ ×Mψ combinations of potential labelling vectors based on the unique vec-
tors in each partition, where |M |= 6 in this example. Using both Equations 6.10 and
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6.11, and Table 6.1, it is easy to see that the joint probability of first, second and last
i- j pair from the product space Lφ ⊗Lψ , shown in Equation 6.12, is equal to 1

3 , which
is 1

M in this example. The joint probability of the third, fourth, and fifth i- j pair in
Equation 6.12 is equal to zero in both Equations 6.10 and 6.11 because those events
were not observed as labelling vectors in the sample space Ω.

Lφ ⊗Lψ =

{


IN

OUT

IN

OUT

OUT

 ,


IN

OUT

OUT

IN

OUT

 ,


IN

OUT

OUT

OUT

IN

 ,


OUT

IN

IN

OUT

OUT

 ,


OUT

IN

OUT

IN

OUT

 ,


OUT

IN

OUT

OUT

IN


}

(6.12)

6.3.1.2 Marginal Probability

The second probability required to compute the mutual information is the marginal
probability of each unique labelling vector in the spaces Lφ and Lψ . Again, this com-
putation turns out to be another normalised count across a vector subspace, counting
how many times Xφ = x(i)

φ
or Xψ = x(i)ψ was observed in the sample space Ω, as shown

in Equations 6.13 and 6.14, respectively.

P(x(i)
φ
) =

1
M

M

∑
j=1

I
x(i)

φ
=x( j)

φ

(6.13)

P(x(i)ψ ) =
1
M

M

∑
j=1

I
x(i)ψ =x( j)

ψ

(6.14)

Example 6.3 Consider again the running example from Figure 6.1 and the partition
Aφ with its set of distinct labelling vectors Lφ , as presented in Equation 6.7. There are
two events within the space Lφ where marginal probabilities can be calculated. Using
Equation 6.13, the marginal probabilities of the first Lφ ,1 ∈ Ω and second Lφ ,2 ∈ Ω

event are equal to 2
3 and 1

3 , respectively.

6.3.2 Mutual Information

As I discussed in Section 6.1, sensitivity analysis assesses the dependence of the prob-
ability of hypotheses on the information employed in the evaluation those hypotheses.
Row entries are sequentially removed from an ACH matrix by an analyst in order to
understand whether their probabilistic judgements change as a result. To do this, the
analyst must first arrive at an initial set of conclusions. Employing argumentation for
sensitivity analysis is no different. The amount of information that can be inferred from
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an initial argumentation framework’s set of labelling vectors should be quantified, thus,
enabling the measurement of the extent to which removing a given argument from a
framework affects the distribution of labels between partitions of other arguments. In
this chapter, this change is measured through the computation of mutual information
between partitions of argument labels before and after the removal of an argument. The
mutual information is a symmetric function that quantifies the conditional dependence
between two random variables, determining the amount of information communicated,
on average, about one random variable through observation of another [200, 59]. The
mutual information between pairs of argument labels across the realised product space
Lφ ⊗Lψ , where Lφ and Lψ are defined Equations 6.4 and 6.5, respectively, is shown
in Equation 6.15.

I(Xφ ;Xψ) = ∑
x(i)

φ
∈Lφ

∑
x( j)

ψ ∈Lψ

P(x(i)
φ
,x( j)

ψ )log

 P(x(i)
φ
,x( j)

ψ )

P(x(i)
φ
)P(x( j)

ψ )

 (6.15)

The units of mutual information depend on the base of the logarithm used in the
calculation. For the purposes of this thesis, information will be measured in bits which
is the logarithm to the base of two.

The mutual information, presented in Equation 6.15, is simplified by conducting
one summation over |M | pairs of outcomes, x(i)

φ
and x( j)

ψ , which feature in the realised
product space Lφ ⊗Lψ , where |M |= Mφ ×Mψ , as shown in Equation 6.16.

I(Xφ ;Xψ) = ∑
(x(i)

φ
,x( j)

ψ )∈Lφ⊗Lψ

P(x(i)
φ
,x( j)

ψ )log

 P(x(i)
φ
,x( j)

ψ )

P(x(i)
φ
)P(x( j)

ψ )

 (6.16)

Many of the addends in Equation 6.16 will equal zero for i- j pairs of outcomes
in the product space that do not feature in the sample space Ω. The only non-zero
contributions to the summation will be i- j pairs that are observed in both the sample
space Ω and the product space Lφ⊗Lψ . Thus, Equation 6.16 can be simplified further
to only include outcomes x(i)

φ
and x( j)

ψ that have a joint probability greater than zero, as
in Equation 6.17.

I(Xφ ;Xψ) = ∑
(x(i)

φ
,x( j)

ψ )∈Lφ⊗Lψ ,P(x(i)
φ
,x( j)

ψ )>0

P(x(i)
φ
,x( j)

ψ )log

 P(x(i)
φ
,x( j)

ψ )

P(x(i)
φ
)P(x( j)

ψ )

 (6.17)

In light of this constraint and using Equation 6.11, it is easy to see that the only non-
zero summands to the mutual information will be from contributions where the joint
probability of pairs of outcomes from the product space feature in the same labelling
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from the sample space. For the sake of computational efficiency, Equation 6.11 is
substituted into Equation 6.17 so that the mutual information is, therefore, reduced to
a single sum over the set of labellings for this particular problem setting, such that

I(Xφ ;Xψ) =
M

∑
x(m)∈Ω

1
M

log

 1

M P(x(m)
φ

)P(x(m)
ψ )

 (6.18)

where x(m) = (x(m)
φ

,x(m)
ψ ), and Ω⊂Lφ ⊗Lψ is the space within which non-zero joint

probabilities are found.
As mentioned earlier, the mutual information is a symmetric function which means

there are 2|A |
2 partitions that produce unique mutual information scores. Therefore,

the mutual information is computed between divisions of arguments for up to half the
powerset to completely explore the distribution of information communicated across
the sets of labelling vectors within an initial argumentation framework.

Example 6.4 Turning back to the running example. Recall that Aφ = (p,q) and Aψ =

(r,s, t). The mutual information between each segment’s set of labelling vectors was
found to be I(Xφ ;Xψ) = 0.9 bits (1 d.p.), under preferred semantics. We see that
observing the labels of, say, the arguments in Aφ tells us 0.9 bits of information about
the labels of arguments in Aψ , and vice versa.

6.3.3 Sensitivity Analysis

In the previous subsection, a method for computing the distribution of information be-
tween partitions of argument labels was proposed. The mutual information scores from
the initial argumentation framework G quantify how much one can infer from the set of
labelling vectors resulting from semantic evaluation of a graph. In this subsection, the
way within which argumentation was employed for sensitivity analysis is explained.
To conduct sensitivity analysis on a Dung argumentation framework, each argument
a ∈ A , and any relation containing that argument, is sequentially removed from the
initial argumentation framework, creating a sensitive framework G a as stated in Def-
inition 6.3. The sensitive graph is then evaluated, using the same semantics chosen
earlier and again, the distribution of mutual information between partitions of argu-
ment labels is computed. The change in mutual information between segments before
and after the removal of the argument a is calculated, enabling the quantification of how
much the initial set of conclusions changed as a result of the removal of an argument.

Definition 6.3 For an argumentation framework G = (A ,R) undergoing sensitivity
analysis, the graph G a = (A a,Ra) is referred to as a sensitive framework that does not
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include the argument a, the argument of interest, where A a =A \a such that A a ⊂A

and a ̸∈A a. For a relation r ∈R, if the argument a features in that relation, i.e. a ∈ r,
then it is removed from the set of relations, such that

Ra = { r | ∀r where r ̸= (a,b)∨ (b,a) and a,b ∈A }. (6.19)

It is important for the reader to note that this chapter only considers the removal
of one argument from an initial argumentation framework while conducting sensitivity
analysis. However, this approach could be extended to remove more than one argument
from an initial graph to understand how this affects the results output from sensitivity
analysis.

Notation 6.1 The two partitions of A a within the sensitive graph G a that obey Defi-
nition 6.1 are denoted as A a

φ
or A a

ψ .

Again, the set of sensitive arguments A a is ordered using the function f (A a) :
A a → Aa, such that Aa = (a1, ...,aN−1) is a vector of arguments. The vector of
sensitive arguments Aa is mapped to a set of labelling vectors through the function
g(Aa) : Aa→L a

M , such that

L a
M = {La

i }Ma

i=1 (6.20)

where Ma is the number of labelling vectors output from semantic evaluation of the
sensitive framework G a, and La

i is the i-th labelling vector containing N−1 argument
labels, such that La

i = (la
1 , ..., l

a
N−1), where la

j ∈ La
i is the label of the argument a j ∈ Aa

and la
j ∈ LAB and LAB = {IN,OUT,UND}.

The sets A a
φ

and A a
ψ are mapped to the argument vectors Aa

φ
and Aa

φ
through

f (A a
φ ) : A a

φ → Aa
φ = {(a1, ...,a|A a

φ
|) | ∀ai ∈A a where ai ̸∈A a

ψ} and (6.21)

f (A a
ψ ) : A a

ψ → Aa
ψ = {(a1, ...,a|A a

ψ |) | ∀a j ∈A a where a j ̸∈A a
φ }. (6.22)

The sets of distinct labelling vectors corresponding to the partitions Aa
φ

and Aa
ψ are

found using the function g, such that

g(Aa
φ ) : Aa

φ →L a
φ = {La

φ ,i}
Ma

φ

i=1 and (6.23)

g(Aa
ψ) : Aa

ψ →L a
ψ = {La

ψ,i}
Ma

ψ

i=1 (6.24)

where Ma
φ
≤ Ma, Ma

ψ ≤ Ma, L a
φ
⊆ L a

M , L a
ψ ⊆ L a

M , and La
φ ,i and La

ψ,i are the i-th
labelling vectors for the partitions Aa

φ
and Aa

ψ , respectively.
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The sensitive argumentation framework is evaluated using the same semantics as
earlier in order to realise the labelling vectors for arguments in the vectors Aa

φ
and

Aa
ψ , enabling the computation of argument acceptance probabilities and thus, mutual

information between partitions of arguments within a given sensitive graph.

Notation 6.2 Let G a be a sensitive framework with the argument a removed, as per
Definition 6.3, and Aa

φ
and Aa

ψ be two sensitive argument vectors, mapped from the
dichotomous sets A a

φ
and A a

ψ that follow Definition 6.1. The random vector X̃ =

(X̃φ , X̃ψ) is a measurable function from a probability space (Ωa,F a,Pa) where X̃
maps elements from the sensitive sample space Ωa = L a

M to events L a
φ
⊗L a

ψ ⊂F a.

Example 6.5 Back to the running example. The result from a mutual information
calculation is presented for the sensitive graph G t , displayed in Figure 6.2. To start,
Definition 6.3 was employed in the instantiation of G t with arguments A t = {p,q,r,s}
and relations Rt = {(q, p),(r,q),(s,q),(r,s),(s,r)}. The sensitive partitions were equal
to A t

φ
= {p,q} and A t

ψ = {r,s} because that was the same as the original partitions
(i.e., Aφ and Aψ in Example 6.1) where neither A t

ψ nor A t
ψ contained the argument t.

The dichotomous sets of arguments A t
φ

and A t
ψ were mapped to the argument vectors

At
φ
= (p,q) and At

ψ = (r,s), respectively, through the function f . Preferred semantics
were then used to evaluate G t in order to observe the set labellings for each partition.
The set of preferred labellings of G t are presented in Table 6.2. The realisation of
argument labels enabled the mapping of each argument in At

φ
and At

ψ to their respective
sets of labelling vectors L t

φ
and L t

ψ , through the function g. The mutual information
I(X̃φ ; X̃ψ) between the labelling vectors for this partition of sensitive arguments was
equal to 0.0 bits (1 d.p.). This result is intuitive. The only arguments that caused a
difference in the labellings of G t were the arguments r and s. However, both r and
s were contained within the set A t

ψ . The arguments p and q were in the set A t
φ

and
their argument labels remained the same across both labellings of the sensitive graph.
An important point to note here is that the mutual information will always equal zero
when all the arguments in a partition are sceptically labelled because it is not possible
to communicate any information about the other partition’s acceptability when there is
no diversity across a segment’s set of labelling vectors.

The total number of combinations of A a
φ

and A a
ψ that produce unique mutual infor-

mation results for a sensitive framework G a is equal to 2|A
a |

2 , which is half the number
of mutual information scores that can be calculated using the labellings from the initial
graph G , i.e. 2|A

a |
2 = 1

2 ×
2|A |

2 .
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q

r

s

p t

Figure 6.2: A sensitive argumentation framework G t

Table 6.2: The preferred labellings of the G t displayed in Figure 6.2.

Labellings, L (A t) p q r s

L1(A
t) IN OUT IN OUT

L2(A
t) IN OUT OUT IN

Once all the unique mutual information scores have been computed for 2|A |
2 and

2|A
a|

2 partitions in the initial and sensitive frameworks, respectively, the diagnosticty

score is computed. The diagnosticity score measures the change in partitions’ mutual
information before and after the removal of an argument of interest and is defined in
Definition 6.4.

Definition 6.4 The diagnosticity score is the change in mutual information before (cal-
culated using the labelling vectors Lφ and Lψ for all arguments in Aφ and Aψ from
G ) and after (calculated using L a

φ
and L a

ψ for all arguments in A a
φ

and A a
ψ from G a)

the removal of the argument a, the argument of interest. Equation 6.25 computes the
diagnosticity score when the argument a was removed from either Aφ or Aψ .

D(Aφ ,Aψ ;A a
φ ∨A a

ψ ) = I(Xφ ;Xψ)− I(X̃φ ; X̃ψ) (6.25)

An interesting point to note about Equation 6.25 is the sign. A positive diagnostic-
ity score implies that there was more information communicated, on average, between
partitions in the initial argumentation framework G , and removing the argument a re-
sulted in a loss of information between argument labels for a given a partition. A
diagnosticity score of zero indicates that the removal of the argument a did not change
the amount of information that could be inferred from the argument labels of the initial
and sensitive frameworks. A score below zero indicates that, after the removal of the
argument a, there was more information that could be inferred between partitions of
the argument labels within the sensitive argumentation graph G a.
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Example 6.6 Returning to the running example for the last time. We now have all that
we need to quantify the impact that removing the argument t had on the acceptability
of arguments within the partitions in the initial and sensitive frameworks. The set of
labelling vectors of Aφ and Aψ were employed to calculate the mutual information
between Xφ and Xψ in the initial graph (Example 6.4). The set of labelling vectors
of At

φ
and At

ψ were also used to compute the mutual information between X̃φ and X̃ψ

in the sensitive framework G t (Example 6.5). Using Definition 6.4, the diagnosticity
score D(Aφ ,Aψ ;A t

ψ) for the aforementioned partitions turns out to be 0.9 bits (1 d.p.).
As the diagnosticity score was above zero, this indicates that there was more mutual
information between the argument labels of Aφ and Aψ in the initial graph than there
was amongst the labels of At

φ
and At

ψ in the sensitive framework, across the set of
labelling vectors; thus, confirming a loss of information between both Aφ and Aψ ’s set
of labelling vectors, through the removal of t, the argument of interest.

6.3.4 Pseudo-code

The DAI is a technique that can be divided into two computational tasks, as shown in
Figure 6.3. First, the user must instantiate an argumentation framework G and choose a
semantics S to evaluate it. Then, they run Algorithm 6.1 (or 6.2) to compute the distri-
bution of mutual information scores across half the powerset of arguments in the initial
framework G . After this, Algorithm 6.3 (or 6.4) takes the mutual information scores,
along with their corresponding partitions, and the initial argumentation framework in
order to conduct sensitivity analysis, which results in a diagnosticity vector comprised
of 2|A |

2 diagnosticity scores for each argument in the framework. It is important to note
here that Algorithms 6.1 and 6.2 are, respectively, serial and parallel implementations
that take the same input and produce the same output. Likewise, Algorithms 6.3 and
6.4 produce the same result and are serial and parallel implementations, respectively.
All algorithms were implemented in C++ [106]. Both parallel algorithms employed a
hybrid distributed-shared memory parallelism that used the Message Passing Interface
(MPI) [146] and OpenMP [159], and they also require a user to input the number of
nodes P and threads T. Some strong scaling speedup results for the parallel implemen-
tations are presented in Section 6.4.3.2.
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Start

G = (A ,R), S

Compute 2A

2 mutual information scores, using Algorithm 6.1 (or 6.2)

Conduct sensitivity analysis, using Algorithm 6.3 (or 6.4)

D[A ][ 2A

2 ]

Stop

Figure 6.3: A flowchart depicting the order within which the algorithms for the DAI
are executed.

6.3.4.1 Distribution of Mutual Information Across the Initial Framework

For an initial argumentation framework, the process by which the distribution of mu-
tual information can be computed for up to half the powerset of arguments is formally
presented in Algorithms 6.1 and 6.2. The algorithms require as input a Dung argu-
mentation framework G and a semantics S that is capable of producing more than one
labelling. The output from the algorithms is an array, of length 2|A |

2 , that contains
unique mutual information scores for the initial framework and the partitions used in
the computation of each result.

6.3.4.2 Sensitivity Analysis

The serial and parallel pseudo-codes for sensitivity analysis are, respectively, presented
in Algorithms 6.3 and 6.4. The algorithms take as input: an array MIs comprised
of mutual information scores obtained from their corresponding partitions; a Dung
argumentation framework G ; and a semantics S capable of producing more than one
labelling. The algorithm returns a diagnosticity vector D[A ][ 2A

2 ], which contains 2|A |
2

diagnosticity scores for every argument a in the initial graph.
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Algorithm 6.1: Compute the distribution of MI across half the powerset of
partitions of argument labels within the initial argumentation framework.

Input : An AF G = (A ,R);
A semantics S.

Output: An array MIs[ 2A

2 ] to store all the unique mutual information scores and their corresponding partitions.

1 L (A ) // Evaluate initial AF G with chosen semantics S.

2 A = f (A ) : A → A // Create a vector of arguments for all arguments in the

initial AF.

3 Ω = g(A) : A→LM // Set the sample space to be equal to the set of labelling

vectors from the initial AF.

4 M = |LM | // Save the number of labellings from the initial AF.

5 MIs← array(MIs, 2A

2 ) // Declare the size of the initial AF’s MI results array.

6 for Aφ ∈ 2A

2 do
7 Aψ = A \Aφ // Create the other set Aψ (Definition 6.1).

8 Aφ = f (Aφ ) : Aφ → Aφ and Aψ = f (Aψ ) : Aψ → Aψ // Create the argument vectors

for Aφ and Aψ.

9 Lφ = g(Aφ ) : Aφ →Lφ and Lψ = g(Aψ ) : Aψ →Lψ // Create the sets of labelling

vectors (Equations 6.4 & 6.5).

10 I(Xφ ,Xψ ) = 0 // Set the MI equal to zero for the current partitions of

the initial AF.

11 for (x(m)
φ

,x(m)
ψ ) ∈Ω do

12 /* Iterate through labellings in the Ω where both x(m)
φ

and x(m)
ψ

occur. */

13 P(x(m)
φ

), P(x(m)
ψ ) // Equations 6.13 and 6.14, respectively.

14 I(Xφ ,Xψ ) += 1
M log

(
1

MP(x(m)
φ

)P(x(m)
ψ )

)
// Compute the addend of the MI between

segments for the m-th labelling vector of the initial AF

(Equation 6.18).

15 MIs←{Aφ ,Aψ , I(Xφ ,Xψ )} // Append the result to the array of initial MI

calculations.

16 return MIs
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Algorithm 6.2: Hybrid distributed-shared memory parallelism for Algorithm
6.1.

Input : An AF G = (A ,R);
A semantics S;
A number of processors P;
A number of threads T.

Output: An array MIs[ 2A

2 ] to store all the unique mutual information scores and their corresponding partitions.
1 Do Lines 1 to 5 in Algorithm 6.1

2 Tasks Per Processor = | 2A

2 |×
1
P

// Compute the number of mutual information

calculations per processor

3 do across P processors
4 MIs(Pi)← array(MIs(Pi),Tasks Per Processor)

5 for Aφ ∈ 2A

2 [Pi : Pi +Tasks Per Processor] do
6 Aψ = A \Aφ Aφ = f (Aφ ) : Aφ → Aφ and Aψ = f (Aψ ) : Aψ → Aψ

7 Lφ = g(Aφ ) : Aφ →Lφ and Lψ = g(Aψ ) : Aψ →Lψ

8 I(Xφ ,Xψ ) = 0

9 Tasks Per T hread = |Ω|× 1
T

// Compute the number of mutual information

calculations per processor

10 do with T threads
11 /* Conduct a parallel reduction sum to compute the mutual

information for a given partition */

12 for (x(m)
φ

,x(m)
ψ ) ∈Ω[Ti : Ti +Tasks Per T hread] do

13 P(x(m)
φ

), P(x(m)
ψ )

14 I(Xφ ,Xψ ) += 1
M log

(
1

MP(x(m)
φ

)P(x(m)
ψ )

)

15 MIs(Pi)←{Aφ ,Aψ , I(Xφ ,Xψ )}

16 Send MIs(Pi) to main processor P1

17 if Processor is P1 then
18 forall Pi do
19 MIs←MIs(Pi) // Receive each processor’s initial mutual information

calculations, the corresponding partitions, and append the result

to the MIs array

20 return MIs
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Algorithm 6.3: Conduct sensitivity analysis on all arguments within an initial
argumentation gramework G .

Input : An array MIs[ 2A

2 ] to store all the unique mutual information scores;
An AF G = (A ,R);
A semantics S.

Output: A diagnosticity vector D[A ][ 2A

2 ].

1 D[A ][ 2A

2 ] // Declare the size of diagnosticity vector D.
2 for a ∈A do
3 /* Begin sensitivity analysis where a is the argument of interest. */

4 G a = (A a,Ra) // Instantiate the sensitive AF (Definition 6.3).

5 L (A a) // Evaluate the sensitive AF G a with chosen semantics S.

6 Aa = f (A a) : A a→ Aa // Create the argument vector for the set of all

sensitive arguments.

7 Ωa = g(A) : A→L a
M // Set the sample space to be equal to the sensitive

AF’s set of labelling vectors.

8 Ma = |L a
M | // Save the number of labellings of the sensitive AF.

9 for Aφ ,Aψ , I(Aφ ,Aψ ,) ∈MIs do
10 /* Iterate through partitions and MI results from the initial AF

G . */

11 if a ∈Aφ then
12 A a

φ
= Aφ \a, A a

ψ = Aψ // Create A a
φ

and A a
ψ by removing a from Aφ

(Definitions 6.1 & 6.3).

13 else if a ∈Aψ then
14 A a

ψ = Aψ \a, A a
φ
= Aφ // Create A a

φ
and A a

ψ by removing a from Aψ

(Definitions 6.1 & 6.3).

15 Aa
φ
= f (A a

φ
) : A a

φ
→ Aa

φ
, Aa

ψ = f (A a
ψ ) : A a

ψ → Aa
ψ // Create the sensitive AF’s

argument vectors.

16 L a
φ
= g(Aa

φ
) : Aa

φ
→L a

φ
, L a

ψ = g(Aa
ψ ) : Aa

ψ →L a
ψ // Create the sensitive sets of

labelling vectors.

17 I(X̃φ , X̃ψ ) = 0 // Set the MI equal to zero for the current partitions

of the sensitive AF.

18 for (x̃(m̃)
φ

, x̃(m̃)
ψ ) ∈Ωa do

19 /* Iterate through the sensitive sample space Ωa */

20 P(x̃(m̃)
φ

), P(x̃(m̃)
ψ ) // Equations 6.13 and 6.14, respectively.

21 I(X̃φ , X̃ψ ) += 1
Ma log

(
1

MaP(x̃(m̃)
φ

)P(x̃(m̃)
ψ )

)
// Compute the addend of the MI

between segments for the m̃-th labelling vector of the

sensitive AF (Equation 6.18).

22 if a ∈Aφ then
23 D(Aφ ,Aψ ,A a

φ
) = I(Xφ ,Xψ )− I(X̃φ , X̃ψ ) // Compute the diagnosticity score

(Equation 6.25)

24 D[a]←{a,Aφ ,Aψ ,D(Aφ ,Aψ ,A a
φ
)} // Append the result to the

diagnosticity vector D

25 else if a ∈Aψ then
26 D(Aφ ,Aψ ,A a

ψ ) = I(Xφ ,Xψ )− I(X̃φ , X̃ψ ) // Compute the diagnosticity score

(Equation 6.25)

27 D[a]←{a,Aφ ,Aψ ,D(Aφ ,Aψ ,A a
ψ )} // Append the result to the

diagnosticity vector D

28 return D
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Algorithm 6.4: Hybrid distributed-shared memory parallel implementation
of Algorithm 6.3.

Input : An array MIs which contains partitions and their mutual information scores;
An AF G = (A ,R);
A semantics S;
A number of processors P;
A number of threads T.

Output: A diagnosticity vector D[A ][ 2A

2 ].

1 D[A ][ 2A

2 ] // Declare the size of diagnosticity vector D.
2 for a ∈A do
3 Do Lines 4 to 8 in Algorithm 6.3

4 Tasks Per Processor = |MIs|× 1
P

// Compute the number of mutual information

calculations per processor

5 do across P processors
6 ∆MIs(Pi)← array(∆MIs(Pi),Tasks Per Processor)
7 for Aφ ,Aψ , I(Aφ ,Aψ ,) ∈MIs[Pi : Pi +Tasks Per Processor] do
8 Do Lines 12 to 16 in Algorithm 6.3
9 I(X̃φ , X̃ψ ) = 0

10 Tasks Per T hread = |Ωa|× 1
T

// Compute the number of mutual

information calculations per processor

11 do with T threads
12 for (x̃(m̃)

φ
, x̃(m̃)

ψ ) ∈Ωa[Ti : Ti +Tasks Per T hread] do
13 P(x̃(m̃)

φ
), P(x̃(m̃)

ψ )

14 I(X̃φ , X̃ψ ) += 1
Ma log

(
1

MaP(x̃(m̃)
φ

)P(x̃(m̃)
ψ )

)

15 if a ∈Aφ then
16 D(Aφ ,Aψ ,A a

φ
) = I(Xφ ,Xψ )− I(X̃φ , X̃ψ )

17 ∆MIs(Pi)←{a,Aφ ,Aψ ,D(Aφ ,Aψ ,A a
φ
)}

18 else if a ∈Aψ then
19 D(Aφ ,Aψ ,A a

ψ ) = I(Xφ ,Xψ )− I(X̃φ , X̃ψ )

20 ∆MIs(Pi)←{a,Aφ ,Aψ ,D(Aφ ,Aψ ,A a
ψ )}

21 Send ∆MIs(Pi) to main processor P1

22 if Processor is P1 then
23 forall Pi do
24 D[a]← ∆MIs(Pi) // Receive each processor’s change in mutual

information calculations and append the result to the

diagnosticity vector

25 return D
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6.4 Experimental Evaluation

In the previous section, the DAI was formally introduced. In this section, results from
experiments on an abstract example, a software application that can execute the DAI,
and the Operation Fortitude-South argumentation framework are presented. The pur-
pose of these results is to show that the DAI is capable of identifying diagnostic argu-
ments, the arguments that change an argumentation framework’s evaluation the most,
in both abstract and real-world settings. Moreover, the goal of presenting a software
application that can run the DAI is to show that while there are many results output by
the technique, the results are still easy to understand and insightful.

In the following subsection, the outputs from the DAI for the argumentation frame-
work G from the running example in Figure 6.1 are presented and discussed.

6.4.1 Results from the Running Example

The initial argumentation framework in Figure 6.1 was employed in the evaluation of
the DAI in an abstract setting because it was assumed to possess a similar topology to
graphs found within intelligence settings (i.e., many symmetric attacks instantiated be-
cause of conflicting information). The initial argumentation framework G in Figure 6.1
was input into Algorithm 6.1 and the distribution of initial mutual information scores,
along with their corresponding partitions, were output. Then, the initial argumentation
framework, mutual information scores, and partitions were input into Algorithm 6.3,
resulting in a diagnosticity vector, which contained 2|A |

2 (i.e., 16) diagnosticity scores
for each argument. Both algorithms employed preferred semantics to discover the set
of preferred labellings from which mutual information was calculated. The diagnos-
ticity scores for the 16 partitions, for each of the removed arguments, is presented in
Figure 6.4.

Figure 6.4: The diagnosticity scores for the 16 partitions of labelling vectors for all
arguments within the Dung-style argument system G in Figure 6.1, discovered using
preferred semantics.
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A violin plot is presented in Figure 6.5 which groups together the diagnosticity
scores of each argument in Figure 6.4 to show the distribution of change in mutual
information after the sequential removal of each argument from the framework. The
mean, average absolute, and median diagnosticity scores are also included in Figure
6.5. The goal of the DAI is to identify arguments that produce the most change in an
argumentation framework’s evaluation, after their removal. Some of the diagnosticity
scores in Figure 6.4 were discovered to be below zero, which meant that there was
more that could be inferred about a given partition’s arguments’ labels in the sensitive
framework. The average of absolute diagnosticity scores enabled the comparison of
both positive and negative scores in order to quantify the magnitude change in mutual
information caused by the removal of an argument of interest.

Figure 6.5: A violin plot showing the distribution of diagnosticity scores, as well as
the median, mean and average absolute change in mutual information, for partitions
of argument labels after the removal of each argument from the initial argumentation
framework G , under preferred semantics.

The argument t had the largest mean, absolute average, and median diagnostic-
ity scores, as demonstrated in Figure 6.5. Thus, one could argue that the argument t

was the most diagnostic because its removal caused the most change in what could be
inferred about argument labels. This result is intuitive because the argument t had sym-
metric attacks between the arguments r and s in the initial framework and removing t

reduces the number of labellings from three to two, as shown in Tables 6.1 and 6.2,
respectively.

The argument q had the second largest set of diagnosticity scores, as shown in Fig-
ure 6.5. Although q only attacked one argument (i.e., q attacks p in Figure 6.1) and
is attacked by two arguments (i.e. the arguments r and s), its removal does not reduce
the number of labellings. While one might think that the diagnosticity scores should
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be lower accordingly, the acceptability of the argument q depends on the acceptance
of the argument t. Thus, the removal of the argument q produces, on average, larger
changes in mutual information because it can only be labelled IN when the argument t

is also labelled IN. The fact that q and t are conditionally dependent and their diagnos-
ticity scores are greater than p, r, and s’ is somewhat synonymous with the notion of
preferred semantics. The means and median change in mutual information for the ar-
guments q and t were closer to unity and the same metrics for the arguments p, r, and s

were closer to zero, such that the diagnosticity vector provides a numeric quantification
of preferred labellings, whose outputs are usually sets of categorical variables.

Another interesting point to note is that the removal of the argument q from the
initial argumentation framework would change the label of the argument p so that it
was sceptically labelled IN within the sensitive graph G q. In this instance, for the
sensitive framework G q and partitions where p was the only argument within a segment
(i.e., A q

φ
= {p} or A q

ψ = {p}), the mutual information scores would always equal zero
because there can be no information communicated between partitions when one of the
sets has no diversity in argument labels.

The arguments r and s share the same distribution of change in mutual informa-
tion, as shown in Figure 6.4, because there is a topological symmetry between both
arguments in the initial argumentation framework G , as per Figure 6.1. The median
diagnosticity score for both arguments was below zero which indicates that a lot more
information was communicated between partitions of labelling vectors in the sensitive
graphs G r and G s after the removal of r and s, respectively.

To compute the diagnosticity vector, the DAI must iterate through half the powerset
of arguments in the initial and sensitive frameworks, which is computationally expen-
sive. To understand whether other methods could be employed in the quantification
of argument importance, two graph topological metrics, namely the degree and eigen-
value centrality, are presented in Table 6.3. The degree centrality counts the number
of direct connections that a node has, whereas the eigenvalue centrality measures how
well connected a node’s links are. Starting with the degree centrality, the arguments
r and s had the highest score, followed by the argument t, then q, and finally p. The
arguments r and s had a total of five edges, argument t had four, q had three, and p

had one in the initial framework G in Figure 6.1. One quick glance at this result might
indicate that the diagnosticity is correlated with how connected an argument is within
a given framework. However, on closer inspection, the argument q has a lower degree
centrality than, say, the argument r, which was more connected, and yet q had a higher
average absolute diagnosticity score, as in Figure 6.5. Now consider the eigenvalue
centrality in Table 6.3. The arguments q, r, s, and t shared the largest eigenvalue cen-
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trality and the argument p had the lowest, which is intuitive since removing p produces
no tangible change in mutual information in Figures 6.4 and 6.5. Removing arguments
r, s and t results in two labellings of the sensitive frameworks G r, G s, and G t , respec-
tively. Whereas, the removal of q does not change the number of labellings, but the
argument p does end up being sceptically labelled IN across all of the labellings of G q

(and G t because q cannot ever be labelled IN when t is removed). The argument t was
the most diagnostic argument within the initial argumentation framework, according to
the results output by the DAI. However, both the degree and eigenvalue centrality do
not indicate this because they are topological metrics, whilst the diagnosticity vector
depends on the outputs from semantic evaluation of the initial and sensitive frame-
works. The DAI employs an evaluation-based method for quantifying the change in an
initial graph’s set of conclusions, after the removal of an argument of interest, which
means that the importance of arguments is calculated as a function of change in a logi-
cal agent’s set of conclusions, not graph topology.

Table 6.3: The degree and eigenvalue centrality for the arguments in the initial AF G .

Metric p q r s t

Degree Centrality 0.250 0.750 1.250 1.250 1.000
Eigenvalue Centrality 0.243 0.485 0.485 0.485 0.485

The results from an experiment on the initial argumentation framework from the
running example demonstrate that the DAI is capable of quantifying the importance of
arguments after their removal. The DAI employs an evaluation-based approach in this
quantification which means that it produces results that other, less computationally ex-
pensive metrics, such as the degree and eigenvalue centrality, cannot achieve. Not only
does the DAI fully explain the change that removing an argument has on an argumen-
tation framework, it captures the notion of conditional dependence between arguments
encapsulated by the semantics. This subsection has shown that the DAI enables users
to understand how sensitive a set of conclusions are to the removal of arguments, thus,
providing a notion of robustness, which intelligence analysts would ordinarily have to
decipher themselves.

6.4.2 A Software Application

In this subsection, an application which can execute the DAI and visualise the diag-
nosticity vector is presented. The purpose of the proposed application is to show that
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although there are many diagnosticity scores output by the technique, the results can
be easy to obtain, whilst also being interpretable and intuitive for the analyst.

The home screen of the application is presented in Figures 6.6 and 6.8. Analysts
can choose to instantiate a Dung argumentation framework using the software itself
(Figure 6.8). Or, the analyst can import an argument analysis stored within the AIF
and the programme will transform it into an ASPIC+ argumentation theory and then to
a Dung argument system, using the procedure described in Section 2.3.2.3 (Figure 6.6).
The arguments and sub-arguments instantiated using the ASPIC+ framework are also
provided for full explainability and to ensure that users can view the internal structure
of arguments abstracted to Dung’s formalism (Figure 6.7). Once a Dung-style argu-
ment system has been instantiated, the user can plot and evaluate the graph using many
of the well-known semantics, and the labellings are displayed in a table so that the user
can understand each argument’s acceptability. In Figures 6.6 and 6.7, the AIF data for
the Operation Fortitude-South argumentation framework was imported and converted
to a Dung-style argument graph, and subsequently plotted and evaluated using com-
plete semantics. Whereas, in Figure 6.8, the argumentation framework G , presented
in Figure 6.1 and used throughout the running examples in Sections 6.3.1, 6.3.2, and
6.3.3, was instantiated using the application and evaluated using preferred semantics.

Once an argumentation framework has been instantiated, using either the method
provided within the application or argument data stored within the AIF, and the seman-
tics chosen, the user can run the DAI by clicking a button, as shown in Figures 6.6 and
6.8. The software then employs Algorithms 6.1 and 6.3 to compute 2|A |

2 diagnostic-
ity scores for every argument within the initial argumentation framework. The output
from those algorithms is a diagnosticity vector which describes the average change in
what can be inferred about labelling vectors and their argument labels as a result of
the sequential removal of arguments. The application generates a new window that
displays the results within the diagnosticity vector, as demonstrated in Figure 6.9. The
window contains a violin plot, which shows the distribution of diagnosticity scores
(top right), and a plot presenting the mean, median, and average absolute diagnosticity
scores (bottom right), for each argument within the initial argumentation framework.
The user can investigate the diagnosticity scores of each argument further by clicking
on an option button (top left). The application then displays a table (bottom left) that
contains all diagnosticity scores for the chosen argument, the partitions before and after
the removal of the argument of interest, and the initial and sensitive mutual information
results for each segment. The diagnosticity scores for the selected argument are also
plotted (middle top) to allow for easier comparison of the 2|A |

2 scores. Upon clicking
on a row in the table (highlighted in red), a specific diagnosticity result can be explored
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Figure 6.6: A screenshot of the home screen of the DAI application. The Operation
Fortitude-South AIF data was imported, transformed, and instantiated into a Dung ar-
gumentation framework. The graph was plotted (right) and evaluated using complete
semantics to discover the complete labellings (bottom left).

Figure 6.7: A screenshot of the DAI application with the Operation Fortitude-South
argumentation framework (right), and the corresponding arguments and sub-arguments
instantiated using an ASPIC+ argumentation system (left).
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Figure 6.8: A screenshot of the home screen of the DAI, where the argumentation
framework G from Figure 6.1 was instantiated using the application, plotted (right),
and evaluated to discover the preferred labellings (bottom left).

Figure 6.9: A screenshot of a window from the DAI application that displays the results
from the diagnosticity vector.

in more detail. The plot containing an argument’s diagnosticity scores (middle top)
changes and the selected row’s change in mutual information is, again, highlighted in
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red in the chart. The initial argumentation framework is also displayed (middle bot-
tom). Arguments are coloured in either blue or green to denote the partition they were
part of, and the removed argument is slightly more transparent. The diagnosticity score
that was analysed in more detail in Figure 6.9 is the same as the result produced by the
running example which culminated in Example 6.6.

6.4.3 Operation Fortitude-South

The diagnosticity vector for the arguments within the Operation Fortitude-South ar-
gumentation framework was obtained by executing Algorithms 6.2 and 6.4 on a high
performance computing cluster1. The distribution of diagnosticity scores, as well as the
mean, average absolute, and median score, for all arguments within the scenario, are
presented in Figure 6.10. Argument 39 had the largest means and median. One could
argue that Argument 39 was the most diagnostic because it caused the most change in
mutual information after its removal from the initial framework. As stated in Appendix
B.4, Argument 39 had the following inference:

Arg 39: [Arg 14, Arg 15] → The main invasion should not land in Pas de
Calais.

Arg 14: If the Allies bring about an invasion of Pas de Calais, then there
will be no opportunities for expansion – e.g., no link-up with
Operation Dragoon.

Arg 15: No opportunities for expansion with Operation Dragoon will re-
sult in a bad outcome for the Allies.

It is indeed interesting that Argument 39 caused the most change in mutual infor-
mation after its removal because its conclusion supports the Normandy hypothesis in-
directly, through the negation of the Pas de Calais hypothesis. Moreover, Argument 39
highlights the importance of strengthening a military effort by combining forces with
another operation, Operation Dragoon, which was an Allied invasion plan for Southern
France that started on 15th August 1944. Had the Axis’ command been provided with
the knowledge of the importance of Argument 39, they may have reconsidered and
correctly forecasted that the Allies wanted to recapture France by attacking from both
the North and South in Normandy and Provence, respectively.

To obtain results on the Operation Fortitude-South argumentation framework, the
DAI was executed on a high performance computing cluster using a distributed-shared

1The high performance computing cluster employed was called Scafell Pike: https://www.hartree.
stfc.ac.uk/technologies/high-performance-computing/ (Accessed on: 02.10.2024).

https://www.hartree.stfc.ac.uk/technologies/high-performance-computing/
https://www.hartree.stfc.ac.uk/technologies/high-performance-computing/
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memory approach, which is made clear in Algorithms 6.2 and 6.4. The DAI is able to
fully quantify the change in an argumentation framework’s evaluation by computing
the change in mutual information across partitions of arguments, up to half the power-
set. While this approach works for small problems, the number of mutual information
calculations doubles with every argument instantiated within an initial argumentation
framework. To address this, two heuristics were noted and one was employed to reduce
the number of computations required to acquire the diagnosticity vector for the Opera-
tion Fortitude-South framework. The heuristics are discussed in the next subsection.

6.4.3.1 Heuristics for Real-World Problems

Recall from Example 6.5 that when all the argument labels in a partition are all scep-
tically labelled, the mutual information between that segment and another is equal to
zero. This was observed to be the case for all segments that did not possess any diver-
sity in arguments labels. Moreover, when a partition contains at least two arguments –
one that was sceptically labelled and one with more than one type of label, across the
set of labellings – it is the probabilities calculated with arguments possessing different
labels that contribute to the mutual information sum. Knowing this, the problem space
from which mutual information is calculated in the initial and sensitive argumentation
frameworks can be reduced at runtime. The two approaches that could be employed go
as follows. For the first method, arguments that are neither attacked nor attack any other
argument will always be labelled IN in the labellings of both the initial and sensitive
argumentation frameworks, unless they were removed during sensitivity analysis. As
such, sceptically labelled arguments can be omitted from the partitions of arguments
from which mutual information is calculated. For example, consider Figure 6.6, after
transforming the AIF to the ASPIC+ framework and then to a Dung argument system,
Arguments 2 to 34 possess no edges2. Those arguments are the set of ordinary premises
in the knowledge base of an ASPIC+ argumentation theory and will always be labelled
IN. Including those arguments in the set of arguments that are to be partitioned in-
creases the number of combinations of partitions without providing any more insights
pertaining to an argument’s diagnosticity. For instance, the 2|A |

2 mutual information
calculations in the original Operation Fortitude-South argumentation framework with
all arguments included is equal to 4.5× 1015. Whereas, if Arguments 2 to 34 were
not included, then there is only 524,288 calculations to fully explore the distribution
of mutual information, which is a significant decrease in the number of computations

2Refer to Appendix B.4 and B.5 for a more detailed look at the internal structure of arguments and the
Dung argumentation framework instantiated from the Operation Fortitude-South scenario, respectively.
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whilst also obtaining the same result.
While the first approach considers arguments that possess no edges, it does not

account for arguments that may be sceptically labelled OUT or UND. To resolve this
one could instead evaluate the initial argumentation framework and then check to see
whether any arguments are sceptically labelled, and omit those arguments from the
set of mutual information calculations. However, the first approach was employed to
obtain results from the Operation Fortitude-South framework and the second method
is left as a task for future work.

6.4.3.2 Strong Scaling Speedup

As previously mentioned, in order to obtain results from the Operation Fortitude-South
argumentation framework, Algorithms 6.1 and 6.3 were parallelised using a hybrid
distributed-shared memory approach which resulted in Algorithms 6.2 and 6.4, respec-
tively. To understand whether the parallel implementations were, in fact, faster than
their serial counterparts some strong scaling speedup results are presented in this sub-
section.

Recall from Chapter 5 that the strong scaling speedup is governed by Amdahl’s
law [6] such that the speedup is limited by the portion of a code which cannot be
parallelised. The strong scaling speedup measures the decreased execution time of an
algorithm as a function of the number of processors, for a fixed-problem size. Strong
scaling speedup is calculated as follows

Strong scaling speedup =
t(1)
t(P)

(6.26)

where t(1) and t(P) are the execution times for, respectively, one and P processors.
Recall also from Chapter 5 that the ideal speedup and execution time should be

Ideal speedup = P and ideal execution time =
t(1)
P

, (6.27)

where P is the number of processors.

Experimental Setup. The results presented in this subsection were obtained on a
cluster of 846 2x 128 Intel Xeon Gold E5-61423 CPUs, each with 16 cores, a clock
speed of 2.5GHz (up to 3.7GHz), and 192Gb of RAM. Algorithms 6.2 and 6.4 were
implemented in C++ [106] and parallelised using MPI [146] and OpenMP [159], for

3https://ark.intel.com/content/www/us/en/ark/products/120487/

intel-xeon-gold-6142-processor-22m-cache-2-60-ghz.html (Accessed on: 02.10.2024)

https://ark.intel.com/content/www/us/en/ark/products/120487/intel-xeon-gold-6142-processor-22m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120487/intel-xeon-gold-6142-processor-22m-cache-2-60-ghz.html
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distributed and shared memory parallelism, respectively. An example of the hybrid
distributed-shared memory architecture employed is presented in Figure D.1 in Ap-
pendix D.1. The strong scaling experiments measured speedup across 1, 2, 10, 25, 50,
100, and 200 nodes, each with either 1, 16, or 32 threads.

The execution time and strong scaling speedup results for the Operation Fortitude-
South argumentation framework are presented in Figure 6.11. The execution time de-
creased and the speedup increased with an increasing number of processors. The results
demonstrated good scaling when P = 1,5,10,25,50 and 100, and acceptable scaling
when P = 200, across all threads. The largest speedup was equal to 99 and observed
when P = 200 and 32 threads. There was a negligible difference between execution
times and speedup for 1,16 and 32 threads across all values of P, which shows that
there was no tangible benefit when offloading the probability and mutual information
calculations to OpenMP (see Lines 10 to 14 in Algorithm 6.2 and Lines 11 to 14 in
Algorithm 6.4). The reason for this is not so intuitive but pertains to the number of
labellings discovered after semantic evaluation. When the number of labelling vec-
tors are small in number, the overhead of shared memory parallelisation outweighs
the decreased execution time such that there is no real benefit observed from the par-
allelism. The hybrid distributed-shared memory parallelism proposed in this chapter
should produce much better results than the ones presented in Figure 6.11 when com-
puting the diagnosticity vector for complex argumentation frameworks with many la-
bellings. However, when increasing the complexity of an argumentation framework,
the speedup will be limited by the length of time taken to compute the semantics, yet
studying this is a task left for future work.

6.5 Related Work

The prior literature on probabilistic argumentation can be divided into two parts, namely
the epistemic [212, 213] and constellation [69, 133] approaches, and the method of
probability calculation proposed in this chapter is distinct from both. For instance,
the proposed algorithms do not employ probability functions in the evaluation of ar-
gumentation frameworks, as with the epistemic approach, nor do they iterate through
all permutations of sub-graphs to compute a probabilities, as with the constellation ap-
proach, which was used to refine an analyst’s prior beliefs about hypotheses in Chapter
5. There was one, similar work that employed the frequency of individual argument la-
bels to compute marginal probabilities which were subsequently used in combination
with a Markov network to semantically evaluate an argumentation framework [176].
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(a) (b)

Figure 6.11: (a) The execution time and (b) strong scaling speedup for the execution of
Algorithms 6.2 and 6.4 for the Operation Fortitude-South argumentation framework,
where 2|A |

2 = 524,288 in the initial graph.

However, the method of probability computation proposed in this chapter differs from
that work because probabilities are computed for sets of arguments that contain a range
of either one to all arguments, and their labels. The formalised probability calculations,
presented in Equations 6.10, 6.11, 6.13 and 6.14, were the first contribution of this
chapter and are the first attempt within the literature to employ partitions of arguments
and their labels, over a set of labellings, to compute joint and marginal probabilities.

To the best of found knowledge, there have been only two proposals before this
one which employed argumentation for sensitivity analysis, the second contribution
of this chapter. The first proposal combines argumentation and Markov random fields
to quantify the sensitivity of items of information [1]. The second proposal evaluates
the sensitivity of initial weights assigned to arguments, within the context of inverse
argumentation, and considers whether changes in an argument’s weight affects the ac-
ceptability degree of other arguments on a continuous scale, computed using gradual
semantics [160]. The DAI, the technique proposed in this chapter, relies solely on
Dung’s original and seminal framework and the outputs from it, computed using a se-
mantics, to calculate probabilities, the distribution of mutual information in the initial
and sensitive graphs, and the change thereof caused by the removal of arguments. The
technique can fully describe what can be inferred about arguments and their labels,
whilst also quantifying the dependence, sensitivity, and robustness of an argumenta-
tion framework’s conclusions based upon the arguments that the graph is comprised
of. The DAI does not rely on the assignment of weights or probabilities and is a purely
evaluation-based approach that utilises the rationality of computational agents in order
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to conduct sensitivity analysis. This approach ensures that the outputs from sensitivity
analyses includes logical reasoning about all the arguments found within an assess-
ment, which may or may not be the case when the same task is completed by a human
agent.

Another closely aligned set of literature is the work conducted on argument strength.
Strength has been represented previously through the arbitrary assignment of a weights

to arguments [9]. Ranking-based semantics [47, 7, 179, 10, 32, 91, 31] also consider
argument strength and more pertinently, they produce a rank order of arguments based
on their relative strength, on an ordinal scale, such that the strength of arguments can
be compared. The DAI is very much similar to this approach because the diagnostic-
ity vector fully captures the relative importance of arguments by measuring how the
distribution of mutual information scores changes after the removal of arguments.

One could argue that the strength of an argument could be described as a function
of the labellings where that argument is acceptable such that its strength depends on
whether it can defend itself against attack, if it is attacked at all. However, the sets of
arguments that are critical to an argumentation framework’s evaluation is a different
notion. In [33], Booth et al. study the sets of arguments whose acceptability is criti-
cal for evaluation other arguments, such that observing the labels of those arguments
resolves the acceptability of others. The DAI is capable of identifying those critical ar-
guments numerically through the quantification of change in the distribution of mutual
information across partitions of arguments. For instance, in Figure 6.5, the arguments
r, s, and t seem to determine the labels of arguments p and q. Thus, the DAI is an-
other step towards resolving the set of critical arguments, which are arguments that an
analyst should study in more detail in order to understand whether their reasoning and
resulting probabilistic judgements are robust.

One final, interesting set of work pertains to the value of the addition of arguments
to argumentation frameworks. As discussed in Chapter 2, in [189], the outputs from
Li, Oren, and Norman’s probabilistic argumentation frameworks [133] were combined
with a utility function to quantify the value of added arguments in order to aid in RFI
generation and intelligence collection, two fundamental parts of the Intelligence Cycle.
The proposal was then extended to a simple, real-world example in [190] to demon-
strate that the method has practical benefit. The notion of adding arguments into argu-
mentation frameworks and measuring the resulting change is an interesting idea that,
with some slight alterations, the DAI is capable of. While the addition of arguments
is a task left for future work, the objective from such a procedure could sensibly be to
aid in RFI generation, maximise the amount of confusion in the labellings of an argu-
mentation framework within, say, a deception operation, or more broadly speaking, to
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identify the most important arguments to attack within a debate.

6.6 Conclusions and Future Work

The DAI, a novel approach presented in this chapter, emulates sensitivity analysis by
employing abstract argumentation. Arguments were partitioned into dichotomous sets
and mapped to argument vectors. After evaluation, the resulting labellings were trans-
formed into labelling vectors, enabling the computation of joint and marginal accep-
tance probabilities of partitions of argument labels, derived from a set of probability
spaces. Those probabilities were then employed in the calculation of mutual informa-
tion for segments of arguments for up to half of the powerset, providing a thorough
quantification of what could be inferred from a set labellings. Arguments were then
sequentially removed from an initial argumentation framework and the distribution of
mutual information was calculated for partitions of argument labels within sensitive
graphs. The change in mutual information as a result of the removal of an argument
was represented by the diagnosticity score for each partition, and the scores for all par-
titions were then stored in a diagnosticity vector. The approach can be split into two
computational tasks. Four algorithms, two serial and two parallel implementations,
were provided to make the method concrete. Results from an abstract example, a soft-
ware application to visualise the results, and the Operation Fortitude-South scenario
were presented and discussed. The DAI was shown to be capable of identifying the
most diagnostic arguments, whilst also numerically quantifying notions of the outputs
from a semantics. The technique provides a holistic quantification of the sensitivity, de-
pendence, and robustness of an argumentation framework’s evaluation using arguments
that were removed. Such a tool should provide benefit to intelligence analysts by algo-
rithmically identifying diagnostic arguments found within an analysis, and guide where
to focus their efforts.

Future work could, for instance, look to: extend the DAI to include more flavour-
some argumentation frameworks; incorporate the heuristic in Section 6.4.3.1 so that
the approach excludes all sceptically labelled arguments from its computations; and
measure the strong scaling speedup for argumentation frameworks with a myriad of
labellings. While the technique presented in this chapter was intended for use within
intelligence settings, another avenue for future work could investigate different do-
mains in which the DAI could be applied. The technique functions within scenarios
that contain conflicting information, where a reasoner wishes to rank the relative im-
portance of arguments based on the dependence of their conclusions on each argument.
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For instance, the DAI could aid in decision and deliberation problems, or in the analysis
of debates. Removing multiple arguments is interesting and should be considered be-
cause it might be the case that the removal of one argument on its own is not diagnostic,
but the elimination of two or more is. Finally, the addition of arguments is intriguing
and may help support the intelligence community in RFI generation and intelligence
collection in the future.
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Summary of Contributions
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The work presented in this thesis has demonstrated that AI tools, techniques, and al-
gorithms could be employed to provide analysts with reasoning support within defence,
security, and intelligence settings. A number of proposals were made that concentrated
on hypothesis representation and generation in Part I and hypothesis evaluation in Part
II. In this part, I summarise the contributions made throughout this thesis and discuss
how the work proposed in each chapter addresses the research question and goals de-
fined in Chapter 1. I then provide some possible areas for future work, focusing mainly
on how to combine the techniques proposed in each chapter to provide analysts with
superior reasoning systems.



Chapter 7

Conclusions and Future
Direction

In this chapter, I offer a summary of the contributions made by the work presented
throughout this thesis and some potential avenues for future work.

7.1 Summary of Contributions

Recall the aim of this thesis, as defined in Chapter 1, was to endeavour to answer the
following research question:

By what means may AI be employed for hypothesis generation and evaluation

within defence, security, and intelligence settings?

This thesis has considered two fundamental aspects within the analysis stage of
the Intelligence Cycle, namely; hypothesis representation and generation in Part I; and
hypothesis evaluation in Part II. In Section 1.2, a number of objectives were laid out in
an attempt to answer the question posed. I now summarise the contributions and detail
how the proposals posited in Chapters 3 to 6 address each of the objectives within this
thesis.

Part I was comprised of Chapters 3 and 4. Consider first the proposal made for
an argumentation scheme from multiple causes to effect in Chapter 3. The scheme is
a characterisation of presumptive reasoning and should provide intelligence analysts
with a concrete method for representing their reasoning about items of information,

202
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evidence, and assumptions that support hypotheses. Drawing upon Walton’s argument
from cause to effect [236], the proposed scheme extends its level of specificity so that it
can be employed within intelligence settings where analysts must reason with probabil-
ities and under uncertainty. The scheme is accompanied by a set of critical questions
which could aid the analyst in RFI generation, or the instantiation of attacks within
abstract formalisms. The scheme is defeasible in nature and can be revised as new
information comes to light, or as the probabilities and uncertainties within the scheme
change. Moreover, the scheme is presumptive, in that the premises are believed to
be true – within a probability range chosen by the analyst and corresponding to the
quantities defined in the Probability Yardstick in Section 2.1.4 – unless there are other
propositions that they are in conflict with, which would change the likelihood of a given
proposition. In presenting the proposal for an argument from multiple causes to effect,
I have addressed the first goal of this research:

“To provide a theory of representation for hypotheses that are supported by in-
formation, evidence, and assumptions that accounts for the defeasible nature of the
reasoning, probability, and uncertainty inherent within intelligence analyses.”

Chapter 4 examined a number of state-of-the-art large language models and em-
ployed a bespoke dataset of hypotheses (labels) supported by information (features)
to assess whether such a technology was capable of generating a diverse set of plau-
sible hypotheses. The dataset contained intelligence reports concerning the current
conflagration between Russia and Ukraine. Large language models were shown to be
capable of generating hypotheses within an intelligence setting. Whether those hy-
potheses were good, according to Pherson and Heuer Jr.’s definition in Chapter 1, is
questionable. Moreover, as the results demonstrated, the majority of the completions
from models had a high probability of hallucination, so whether large language models
can be reliably used for hypothesis generation is unanswered. Language models per-
form well at tasks for which they have been trained such as many of the tasks that I
listed in Section 4.1. However, they perform relatively poorly at reasoning tasks, and
did perform poorly whilst conducting the abstractive reasoning task in Chapter 4. The
work conducted in this chapter illustrated that while large language models can gener-
ate hypotheses, whether current models can generate a diverse set of good and reliable
(i.e., without hallucination) for more than one intelligence scenario is, respectively,
questionable and unanswered, thus, addressing the second research goal:

“To investigate the feasibility of employing large language models for hypothesis
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generation within an intelligence domain.”

Moving onto to the proposals made in Part II of this thesis. In Chapter 5, a formal
method was proposed for the refinement of intelligence analysts’ prior beliefs about the
probability of hypotheses, using the outputs from semantic evaluation of probabilistic
argumentation frameworks [133] and Bayes’ theorem [18]. The technique enables the
incorporation of uncertainty in the probabilistic judgements about hypotheses, whilst
also allowing analysts to assign a confidence level to each information argument and
argument with an embedded hypothesis instantiated from an analysis. The approach
was shown to produce both sensible and intuitive outputs from frameworks instantiated
within both abstract and practical settings. The approach defined in Chapter 5 addresses
the third research goal:

“To design and develop a formal account capable of refining an intelligence an-
alyst’s initial probabilistic judgements by conditioning their prior beliefs on the ac-
ceptability of available information. The approach should be tested on a real-world
example to assess the potential performance of the proposal in practice.”

Chapter 6 proposed a technique that employed argumentation for sensitivity anal-
ysis, step seven of the ACH (Section 2.1.5.2). The approach uses the outputs from
semantic evaluation of Dung’s abstract argumentation frameworks [70] in order to
compute the probability of partitions of argument labels that were subsequently em-
ployed in mutual information [200, 59] calculations, before and after the removal of
an argument of interest. The change in the distribution of mutual information between
segments of argument labels was assumed to be synonymous with the notion of an
argument’s diagnosticity. The proposal explores all the partitions that produce unique
mutual information scores, providing a holistic quantification of the sensitivity, robust-
ness, and dependence of an argumentation framework’s conclusions to change caused
by the removal of arguments. The DAI is an evaluation-based approach that uses the
rationality, coherence, and logic of computational argumentation to identify diagnostic
arguments. The approach should alleviate the reliance on human effort whilst analysts
conduct sensitivity analyses. The diagnosticity vector output by the DAI was assessed
using an abstract example, a software application to show that results from the approach
are easy for the analyst to obtain and visualise, and the Operation Fortitude-South ar-
gumentation framework, a real-world example. Chapter 6, therefore, answers the last
goal of this research:



CONCLUSIONS AND FUTURE DIRECTION 205

“To design and develop explainable algorithms which quantify the sensitivity, ro-
bustness, and dependence of the conclusions drawn from an intelligence analysis based
on the arguments present within it, and evaluate the proposed approach using a real-
world example from the intelligence domain.”

Finally, in the introduction to Part II, the methodology for the manual argument
mining procedure undertaken on data from a real-world deception scenario, called Op-
eration Fortitude-South, was presented. Arguments from the example were extracted
from the ACH matrix in Appendix B.1.5 and represented using a number of argumen-
tation schemes, and the critical questions were employed to instantiate attacks between
those arguments. The annotated argument data was stored in the AIF, which enabled
the acceptability of arguments to be discovered through the translation of the AIF to an
ASPIC+ argumentation theory and then to Dung argument system, using the process
described in Section 2.3.2.3. The introduction to this part confirmed that analysis stored
within an ACH matrix can be transformed to refined argument data (Section 2.3.3.1) to
enable argumentation to be used on real-world scenarios, partially addressing the last
two goals of this thesis.

7.2 Future Directions

The results presented throughout this thesis have provided a number of interesting av-
enues for future work and in this section, I discuss some of those possible areas.

Future work from this thesis can be divided into two categories, namely: work
pertaining to the extension of the research within each chapter; and the combination
of the techniques in each chapter to create superior reasoning systems for intelligence
analysts. Here, I only consider the latter as it is the most interesting, and because of
the diverse range of techniques proposed throughout this thesis. Moreover, many of
the ideas to extend the work at the chapter-level are included within the conclusions of
each chapter. However, I will reiterate some of the previously mentioned avenues from
individual chapters when discussing how the work from this thesis might be combined,
for the reader’s benefit.

While the tools and techniques proposed within this thesis were designed, devel-
oped, and tested in isolation, they do not need to be implemented nor applied indepen-
dently. First and foremost, as the finished intelligence product is a fundamental part
of the Intelligence Cycle, the proposals for hypothesis generation in Chapter 4, prior
probability refinement in Chapter 5, and sensitivity analysis in Chapter 6 could be, re-
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spectively, employed to: generate hypotheses that analysts evaluate; revise the result-
ing probabilistic judgements using the outputs from semantic evaluation of PrAFs; and
identify diagnostic arguments. The outputs from all three aforesaid techniques could
be included with intelligence reports. Moreover, the argumentation scheme proposed
in Chapter 3 could be also be included with an intelligence report in order to help stake-
holders, commanders, and decision makers understand ASAs’ reasoning through the
representation of propositions and inference from real-world data within intelligence
analyses.

It is also easy to think about how the argumentation scheme for an argument from
multiple causes to effect, as proposed in Chapter 3, and the technique for the refinement
of analysts’ prior beliefs about hypotheses, as put forth in Chapter 5, could be com-
bined. Hypotheses instantiated as conclusions from real-world argument data could be
represented by the scheme proposed in Chapter 3, which might produce better posterior
probabilities than the ones presented for the Operation Fortitude-South argumentation
framework in Section 5.4.2. Although the aforementioned avenue regards how the
scheme in Chapter 3 could enhance the proposal in Chapter 5, the technique in Chapter
5 can improve the probabilistic judgements instantiated within the scheme in Chap-
ter 3. For instance, in Section 3.1.4, I describe how, due to the nature of intelligence
analyses, it is extremely challenging to reliably compute the joint probability of in-
formation, evidence, assumptions, and a hypothesis, and the conditional probability of
the information, evidence, and assumptions conditioned on a hypothesis. However, the
proposal for the refinement of priors, made in Chapter 5, could sensibly be employed
to compute those quantities. Furthermore, as I argued in Section 5.3.5, the likelihood
of an information argument given the acceptability of the hypothesis of interest can
be quantified using the probability of non-existence and defeat of all other hypotheses.
Thus, the addition of another proposition within the argument from multiple causes to
effect that contains an assertion about the defeat of all other hypotheses, and the proba-
bility of that event, might help to make the scheme’s reasoning even more explicit than
it already is.

Recall from Section 4.2.2.1 that the intelligence reports published on the X, for-
merly Twitter, account of the United Kingdom’s Ministry of Defence contained strate-
gic and operational hypotheses, and tactical hypotheses were not observed within the
dataset, most likely because of their level of classification. In [225], the United States’
Department of Defence define strategic, operational, and tactical intelligence and de-
scribe how tactical intelligence should inform operational objectives, and operational
intelligence should also inform strategic objectives. As I briefly stated in Chapter 4, the
relationship between between strategic, operational, and tactical hypotheses seemingly
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forms a tree structure, where tactical hypotheses that are evaluated using tactical intel-
ligence could aid in the evaluation of operational hypotheses which, when evaluated
using operational intelligence, help in the assessment of strategic hypotheses and their
probabilities. Although defining such a relationship is a task left for future work, there
has been some work within the computational argumentation community that considers
hierarchical reasoning in legal cases using abstract dialectical frameworks [35], where
the outcome from a case (i.e., the root or level zero of the tree) is determined by the
issues (i.e., level one of the tree) and the acceptability of a set of abstract factors (i.e.,
the leaves or level two of the tree) of a given case [3, 2, 16]. Mapping tactical, op-
erational, and strategic hypotheses to this formalism would be no small undertaking.
However, through close collaboration with the intelligence community, a number ar-
gumentation schemes for domain- and scenario-independent hypotheses, for each type
of hypothesis at all levels of the hierarchy, could be created, allowing the outcome
of a strategic hypothesis to be determined. Nevertheless, there would be issues with
this approach because hypotheses contained within finished intelligence products are
required to be accompanied by a qualitative probability range, as discussed in Section
2.1.4. The proposed formalism would be required to incorporate both probability and
uncertainty, a task that abstract dialectical frameworks are not capable of in their cur-
rent state of development. One solution to this would be to extend the capabilities of
abstract dialectical frameworks so that the formalism includes notions of probability
at each node and edge within the graph. Another approach might instead be to move
away from abstract dialectical frameworks and study whether the probabilistic outputs
from analysis of tactical, operational, and strategic hypotheses could be revised, using
the approach in Chapter 5, and the tree structure instantiated within a Bayesian net-
work [111] in order to understand whether tactical and operational hypotheses could
be employed in the evaluation of strategic ones. This approach would assume that each
level of the tree is its own sub-analysis, where an analyst has instantiated and evaluated
an ACH matrix at each level of the tree hierarchy, transformed the ACH matrix to an
argumentation framework, and arrived at tentative conclusions about the prior proba-
bility of each hypothesis (i.e., each node within the tree) so that those probabilities can
be refined, using the technique in Chapter 5.

Finally, I have said little throughout this thesis about the types of data instantiated
within arguments for a hypothesis or its negation. Intelligence analysts reason using
multi-modal data. In Section 2.1.2, I outline the five types of intelligence which are
usually collected using one of the five disciplines of intelligence collection [139]. For
example, IMINT analysts collect and reason with images, HUMINT agents observe
events and report them using natural language, and SIGINT analysts intercept signals
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from communication and non-communication devices, to name a few pertinent exam-
ples. Moreover, much of the information that we, as humans, consume and converse
about is multi-modal. Moving forward, the field of computational models of argument
as a whole should study argumentation that is comprised of more than just natural lan-
guage corpora because, as is often the case within intelligence settings, the propositions
instantiated as premises within arguments might not always take the form of a string.

The avenues identified for future work in this section are just some of the potential
options resulting from the work presented in this thesis. While this section discussed
how one might combine the different techniques in each of the chapters of this the-
sis, there are also a number of interesting chapter-level extensions that would benefit
from further study. The results presented throughout this thesis demonstrate that both
the theoretical and practical work from the field of computational argumentation are
showing much promise for use within defence, security, and intelligence settings.
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[52] C. Chesñevar et al. “Towards an argument interchange format”. In: The Knowl-

edge Engineering Review 21.4 (2006), pp. 293–316.

[53] R. M. Clark. Intelligence Colection. Washington, DC: CQ Press, 2013.

[54] C. von Clausewitz. On War (Book One): Edited and Translated by Michael

Howard and Peter Paret. Princeton University Press. Princeton, New Jersey,
1832.

[55] M. L. Cobo, D. C. Martı́nez, and G. R. Simari. “Acceptability in Timed Frame-
works with Intermittent Arguments”. In: Artificial Intelligence Applications

and Innovations. Ed. by L. Iliadis, I. Maglogiannis, and H. Papadopoulos.
Berlin, Heidelberg: Springer, 2011, pp. 202–211.

https://www.careersinthemilitary.com/career-detail/all-source-intelligence-specialists
https://www.careersinthemilitary.com/career-detail/all-source-intelligence-specialists
https://doi.org/https://doi.org/10.48550/arXiv.2107.03374


214 BIBLIOGRAPHY

[56] M. L. Cobo, D. C. Martı́nez, and G. R. Simari. “An approach to timed ab-
stract argumentation”. In: Proc. of International Workshop of Non-monotonic

Reasoning. Vol. 2010. Toronto, Canada. 2010.

[57] M. L. Cobo, D. C. Martı́nez, and G. R. Simari. “On Admissibility in Timed
Abstract Argumentation Frameworks”. In: Proc. of the European Conference

on Artificial Intelligence. IOS Press, 2010, pp. 1007–1008.

[58] S. Coulthart. “Why do analysts use structured analytic techniques? An in-depth
study of an American intelligence agency”. In: Intelligence and National Secu-

rity 31.7 (2016), pp. 933–948.

[59] T. Cover and J. Thomas. “Elements of Information Theory”. In: John Wiley &
Sons, 2005. Chap. Entropy, Relative Entropy, and Mutual Information, pp. 13–
55.

[60] G. D’Aniello et al. “Application of Granular Computing and Three-way deci-
sions to Analysis of Competing Hypotheses”. In: Proc. of the IEEE Interna-

tional Conference on Systems, Man, and Cybernetics. 2016, pp. 1650–1655.

[61] J. Dagdelen et al. “Structured information extraction from scientific text with
large language models”. In: Nature Communications 15 (1418 2024).

[62] L. Dalcı́n, R. Paz, and M. Storti. “MPI for Python”. In: Journal of Parallel and

Distributed Computing 65.9 (2005), pp. 1108–1115.

[63] Defence Science and Technology Laboratory. eleatics: Knowledge Representa-

tion and Reasoning. Retrieved from: https://dstl.github.io/eleatics/.
(Accessed on: 15.12.2022).

[64] Department of Defence: News Briefing - Secretary Rumsfeld and General My-

ers. Retrieved from: http : / / archive . defense . gov / Transcripts /
Transcript.aspx?TranscriptID=2636. (Accessed on: 30.09.2020).

[65] J. Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: Proc. of the Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies. Ed. by J. Burstein, C. Doran, and T. Solorio. Vol. 1. Minneapolis,
Minnesota: Association for Computational Linguistics, 2019, pp. 4171–4186.

[66] L. Donovan. Strategic Deception: Operation Fortitude. Lucknow Books, 2014.

[67] M. C. Duke. “Probability and confidence: How to improve communication of
uncertainty about uncertainty in intelligence analysis”. In: Journal of Behav-

ioral Decision Making 37.1 (2024).

https://dstl.github.io/eleatics/
http://archive.defense.gov/Transcripts/Transcript.aspx?TranscriptID=2636
http://archive.defense.gov/Transcripts/Transcript.aspx?TranscriptID=2636


BIBLIOGRAPHY 215

[68] K. A. Duncan and J. L. Wilson. A multinomial-dirichlet model for analysis of

competing hypotheses. Vol. 28(6). 2008, pp. 1699–709.

[69] P. Dung and P. Thang. “Towards (Probabilistic) Argumentation for Jury-based
Dispute Resolution.” In: Proc. of the Conference on Computational Models of

Argument. 2010, pp. 171–182.

[70] P. M. Dung. “On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games”. In: Artifi-

cial Intelligence 77.2 (1995), pp. 321–357.

[71] P. E. Dunne et al. “Weighted argument systems: Basic definitions, algorithms,
and complexity results”. In: Artificial Intelligence 175.2 (2011), pp. 457–486.

[72] R. Duthie, K. Budzynska, and C. Reed. “Mining Ethos in Political Debate”.
In: Porc. of the Conference on Computational Models of Argument. Ed. by
P. Baroni et al. Vol. 287. Frontiers in Artificial Intelligence and Applications.
Netherlands: IOS Press, 2016, pp. 299–310.

[73] J. Eckle-Kohler, R. Kluge, and I. Gurevych. “On the Role of Discourse Mark-
ers for Discriminating Claims and Premises in Argumentative Discourse”. In:
Proc. of the Conference on Empirical Methods in Natural Language Process-
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Appendix A

On Large Language Models for
Hypothesis Generation

A.1 Unique Identifiers

Presented below is a list of unique identifiers that were employed in extraction of
Tweets that potentially contained intelligence reports. The hashtag # denotes a number
pertaining to the order within which Tweets were published. For instance, (1 / 5) would
refer to Tweet number one out of five.

• (# / #)

• (#/#)

• (# of #)

• [#/#]

• /#

• Post # of #

• INTELLIGENCE UPDATE:
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A.2 Example of Prompts

A.2.1 One-Shot (Unbiased)

The prompt presented below contains one, unbiased training example that was gener-
ated using Algorithm 4.1. The randomly selected training example is italicised and the
target information is in bold text.

• ‘You are an Artificial Intelligence assistant for an intelligence analyst who is
analysing the conflict between Russia and Ukraine. Your job is to generate a
hypothesis using a set of information that you have received. In this context, a
hypothesis is a sentence, it is testable and falsifiable, it is based on the informa-
tion you received, and it predicts anticipated results clearly. Please generate one
hypothesis based on the inputted information.’

• ‘Information: Elements of the Ukrainian Armed Forces have advanced into the

multi-layered main Russian defensive line east of the town of Robotyne. Ukrainian

dismounted infantry forces are continuing to make gradual tactical advances

against Russian positions and attrite Russian forces in the area. Ukrainian forces

have also maintained pressure on Russian positions to the south of Bakhmut,

making gradual gains between Klishchiivka and Adriivka.’

• ‘Hypothesis: It is highly likely that Russia has redeployed forces from other areas

of the frontline to replace degraded units around Robotyne.’

• ‘Information: Over the last two months, Russia has likely started forming
up major new formations to add depth to its ground forces. These include
the 25th Combined Arms Army. Since its invasion of Ukraine, Russia has
mainly deployed mobilised reservists to back-fill established formations, or
as part of territorial defence infantry regiments. It has rarely established
new, all-arms organisations such as combined arms armies which are de-
signed to be a self-sufficient force. An exception to this was the 3rd Army
Corps created in summer 2022, which has generally performed poorly.’

• ‘Hypothesis: ’
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A.2.2 One-Shot (Biased)

The prompt presented below contains one, biased training example that was generated
using Algorithm 4.2. Again, the training example is italicised and the target informa-
tion is in bold text.

• ‘You are an Artificial Intelligence assistant for an intelligence analyst who is
analysing the conflict between Russia and Ukraine. Your job is to generate a
hypothesis using a set of information that you have received. In this context, a
hypothesis is a sentence, it is testable and falsifiable, it is based on the informa-
tion you received, and it predicts anticipated results clearly. Please generate one
hypothesis based on the inputted information.’

• ‘Information: Over the last two months, Russia has likely started forming up

major new formations to add depth to its ground forces. These include the 25th

Combined Arms Army. Since its invasion of Ukraine, Russia has mainly deployed

mobilised reservists to back-fill established formations, or as part of territorial

defence infantry regiments. It has rarely established new, all-arms organisations

such as combined arms armies which are designed to be a self-sufficient force.

An exception to this was the 3rd Army Corps created in summer 2022, which

has generally performed poorly. Russia will likely deploy any new formation

as a reserve force in Ukraine. However, in the longer term, Russia aspires to

strengthen its forces facing North Atlantic Treaty Organisation.’

• ‘Hypothesis: Without a major new wave of mandatory mobilisation, Russia is

unlikely to find enough new troops to resource even one new army. ’

• ‘Information: Over the last two months, Russia has likely started forming
up major new formations to add depth to its ground forces. These include
the 25th Combined Arms Army. Since its invasion of Ukraine, Russia has
mainly deployed mobilised reservists to back-fill established formations, or
as part of territorial defence infantry regiments. It has rarely established
new, all-arms organisations such as combined arms armies which are de-
signed to be a self-sufficient force. An exception to this was the 3rd Army
Corps created in summer 2022, which has generally performed poorly.’

• ‘Hypothesis: ’
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A.3 Examples of Model Completions

The GPT 3.5, 2 epochsmodel was provided with the same target information within
a one-shot learning prompt, and tasked with generating the same target hypothesis. The
target hypothesis for both the unbiased and biased one-shot prompts, respectively, dis-
played in Appendices A.2.1 and A.2.2 is presented below:

‘Russia will likely deploy any new formation as a reserve force in Ukraine,

however, in the longer term, Russia aspires to strengthen its forces facing

North Atlantic Treaty Organisation.’

The model completions for unbiased and biased one-shot learning when tempera-
ture was equal to 0.1 and unity is included below.

A.3.1 Unbiased Prompting

Starting with unbiased prompting. The prompt from Appendix A.2.1 was used for the
generations in this subsection. The completions generated using both temperatures are
provided below.

A.3.1.1 Completions, when temperature was equal to 0.1

1. ‘It is highly likely that the 25th Combined Arms Army is being formed to help
address the Russian military’s chronic shortage of combat power.’

2. ‘It is highly likely that Russia has created the 25th Combined Arms Army to help
address its ongoing manpower shortages.’

3. ‘It is highly likely that the 25th Combined Arms Army is being formed to help
alleviate the strain on the Russian military.’

4. ‘It is highly likely that the 25th Combined Arms Army is being formed from a
mix of mobilised reservists and regular forces.’

5. ‘It is highly likely that the 25th Combined Arms Army is being formed to help
address Russia’s ongoing manpower shortages.’

6. ‘It is highly likely that Russia has created the 25th Combined Arms Army to help
bolster its defences in the north of the country.’

7. ‘It is highly likely that Russia has formed the 25th Combined Arms Army to help
bolster its defences in the Donbas region.’
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8. ‘It is highly likely that the 25th Combined Arms Army is being formed from a
mix of mobilised reservists and regular army personnel.’

9. ‘It is highly likely that the 25th Combined Arms Army is being formed to help
Russia maintain a credible force in the Donbas region.’

10. ‘It is highly likely that the 25th Combined Arms Army is being formed to help
address the Russian military’s ongoing shortage of trained personnel.’

A.3.1.2 Completions, when temperature was equal to unity

1. ‘Russia is likely making this change to improve its ability to perform large-scale
offensive operations against determined and well-armed opposition.’

2. ‘It is possible that Russia’s new combined arms army formations are too large,
combining mobilised reservists with recruited contracted soldiers from Russia.’

3. ‘The creation of the 25th Combined Arms Army shows that the Russian Ground
Forces is still suffering from significant structural and operational problems nearly
nine months into the intervention.’

4. ‘It is highly likely that Russia will insert the 25th Combined Arms Army into the
frontline following a period of training and to provide depth.’

5. ‘This shift towards forming new composite formations suggests Russia likely
faces continued difficulty finding sufficient experienced reservists to deploy to
Ukraine.’

6. ‘Straining its resources even further by forming up 25th Combined Arms Army
is likely to have been a reluctant decision for Russia.’

7. ‘The 25th Combined Arms Army is likely being formed in part because post-
Summer 2022 mobilisations have probably added little combat power to the
ground forces.’

8. ‘Russia’s attempt to create another large new formation is likely driven by a re-
quirement for combat power, rather than desperation to provide additional forces
to the front.’

9. ‘Russian commander in Ukraine, Andrey Serdyukov, may be attempting to create
a stronger organisation with a renewed guidance to be ready for combat and for
operations at a higher operational tempo.’
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10. ‘It is highly likely that Russia is creating these new army-level formations in
response to the challenges it has experienced on the ground, and to support its
anticipated strategy in Ukraine.’

A.3.2 Biased prompting

The biased prompt from Appendix A.2.2 was used for the generations in this subsec-
tion. The completions generated using both temperatures are provided below.

A.3.2.1 Completions, when temperature was equal to 0.1

1. ‘Russia will likely deploy any new formation as a reserve force in Ukraine.’

2. ‘Russia will likely deploy any new formation as a reserve force in Ukraine.’

3. ‘Russia will likely deploy any new formation as a reserve force in Ukraine.’

4. ‘Russia will likely deploy any new formation as a reserve force in Ukraine. How-
ever, in the longer term, Russia aspires to strengthen its forces facing North At-
lantic Treaty Organisation.’

5. ‘Russia will likely deploy any new formation as a reserve force in Ukraine.’

6. ‘Russia will likely deploy any new formation as a reserve force in Ukraine. How-
ever, in the longer term, Russia aspires to strengthen its forces facing North At-
lantic Treaty Organisation.’

7. ‘Russia will likely deploy any new formation as a reserve force in Ukraine.’

8. ‘Russia will likely deploy any new formation as a reserve force in Ukraine.’

9. ‘Russia will likely deploy any new formation as a reserve force in Ukraine.’

10. ‘Russia will likely deploy any new formation as a reserve force in Ukraine. How-
ever, in the longer term, Russia aspires to strengthen its forces facing North At-
lantic Treaty Organisation.’

A.3.2.2 Completions, when temperature was equal to unity

1. ‘With its military confronted in eastern Ukraine and potentially facing off against
North Atlantic Treaty Organisation in the future, it is likely getting increasingly
difficult for Russia to resupply its forces in Ukraine with the necessary muni-
tions, equipment and personnel.’



238 A.3 EXAMPLES OF MODEL COMPLETIONS

2. ‘Without a major new wave of mandatory mobilisation, Russia is unlikely to find
enough new troops to resource even one new army.’

3. ‘Most mobilised reservists are only likely to be deployed within the region they
were raised, unlike voluntary mobilisation which pulls from current or former
full-time servicemen from across Russia.’

4. ‘Without a major new wave of mandatory mobilisation, Russia is unlikely to find
enough new troops to resource even one new army.’

5. ‘Russia is likely finding it challenging to crew and stand up 25th Combined Arms
Army, a formation it never planned for prior to the large-scale deployment of
Russian ground forces to Ukraine.’

6. ‘Russia will likely deploy any new formation as a reserve force in Ukraine. How-
ever, in the longer term, Russia aspires to strengthen its forces facing North At-
lantic Treaty Organisation.’

7. ‘These new formations are likely part of a reorganised and growing Russian in-
vasion force.’

8. ‘Russia’s fielding of new units in Ukraine’s east indicates that, despite persis-
tent problems quickly mobilising and equipping wave after wave of reservists,
Moscow intends to maintain strong pressure on Ukraine.’

9. ‘Russian commanders are likely still reluctant to rely on reservists to secure the
wider ground in Ukraine.’

10. ‘Without a major new wave of mandatory mobilisation, Russia is unlikely to find
enough new troops to resource even one new army.’



Appendix B

Operation Fortitude-South

In this appendix, I describe how the refined ACH matrix from the Operation Fortitude-
South scenario was instantiated in a Dung argumentation framework. In Section B.1, I
describe Alan Knox’s contribution, which was presented on Dstl’s eleatics website, in
full. I also present: the list of information, evidence, and assumptions found on Dstl’s
eleatics website in Section B.2; the AIF argument graph for the scenario in Section
B.3; the arguments instantiated using the ASPIC+ framework in Section B.4; and the
abstract argumentation framework that was translated from the AIF in Section B.5.

B.1 Dstl’s Contribution

Knox identified Operation Fortitude-South as an interesting scenario for further study
within the context of the ACH and argumentation schemes. As previously discussed in
Part II, Operation Fortitude-South was an Allied attempt to deceive the German mili-
tary and make them believe that the Allied forces would invade Europe at the crossing
between Dover and Pas de Calais, and any other attacks were meant to be thought of
as diversionary attacks. The Allied nations were able to deceive the Germans using a
number of different tactics, such as through the reporting of false information by dou-
ble agents, and also positioning inflatable rubber equipment, dirt road tracks leading to
nowhere, and the erection of empty cities of tents in southeastern England, to name a
few [66, p. 13-18].

Knox loosely follows the ACH process for the Operation Fortitude-South scenario,
making some slight alterations to the procedure which are discussed below. Recall
from Part II that the analysis of the scenario was conducted from the perspective of
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what Hilter and the German command would have believed was the most likely Allied
invasion site. Operation Fortitude-South was so successful that Hilter still did not be-
lieve that the Normandy landings on D-Day, on 6th June 1944, was the main invasion
site even a month after they had occurred, on the 8th July 1944 [66, p. 15].

In the following subsections, I now summarise the work conducted by Knox at Dstl
for the Operation Fortitude-South example found on the eleatics website.

B.1.1 Step One

To begin their analysis, and in accordance with the first step within the ACH discussed
in Section 2.1.5.2, Knox identified all the hypotheses for the Operation Fortitude-South
scenario1, which are listed below:

• Pas de Calais: The main invasion will land in Pas de Calais.

• Normandy: The main invasion will land in Normandy.

• Brittany: The main invasion will land in Brittany.

• Cotentin Peninsula: The main invasion will land on the Cotentin Peninsula.

• Elsewhere: The main invasion will land outside the range of close air support.

B.1.2 Step Two

After the generation of hypotheses, the second step of the ACH requires that analysts
list the information, evidence, and assumptions. Knox identified seventeen items which
are shown in the row names of Table B.1 and each acronym is defined in Appendix B.2.

At this point, Knox made a slight adaptation to the ACH process and reduced the
number of hypotheses, from five to two, before instantiating the initial ACH matrix.
Pherson and Heuer Jr. suggest that the diagnosticity matrix should be refined in step
five [101, 173], after completing the initial analysis in step three. Knox then reduced
the number of hypotheses using the two following assumptions:

• Close Air Support: The Allied invasion is required to have close air support.

• Peninsula: Forces landing on a peninsula can be cut off on a narrow front.

1https://Dstl.github.io/eleatics/argumentation/fortitude/hypotheses.xhtml (Ac-
cessed on: 10.02.2023)

https://Dstl.github.io/eleatics/argumentation/fortitude/hypotheses.xhtml
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Knox reasoned using these assumptions and discounted both the Brittany and the
Contentin Peninsula hypotheses because they were located on a peninsula. The else-

where hypothesis was also removed due to lack of close air support. In reality, this
refinement should have occurred in step five after debating instances where different
analysts disagreed with the initial analysis in step four. However, this alteration to the
ACH process most likely occurred because the analysis was conducted by one analyst
within Dstl.

B.1.3 Step Three

Remember from Section 2.1.5.2 that step three of the ACH requires analysts to instan-
tiate a matrix with hypotheses (as column headers) and items of information, evidence,
and assumptions (as row headers). The consistency, or otherwise, of each row entry
against each hypothesis is assigned by an analyst during analysis. In the running ex-
ample, Knox populated an initial ACH matrix, which is displayed in Table B.1.

Knox argues that a number of cells within the matrix can be modelled through the
instantiation of one of Walton’s argumentation schemes2 [235], which is a concept that
has been explored previously by Murukannaiah et al. in [152] and discussed in more
detail in Section 2.4.3. The schemes that Knox identified are presented in Table B.2.
While Knox does list some schemes that might be employed within the ACH, they do
not show how these schemes should be instantiated using the available data, which is a
novel task and an extension of Dstl’s contribution that is presented in Part II.

Order of Battle (ORBAT). At this point, in between step three and four of the ACH,
Knox again strays from the formal ACH process and conducts a sub-analysis, referred
to as the ORBAT matrix3 and presented in Table B.3, grouping row entries which they
believed were subordinate to others. They argue that it is not the existence of two mil-
itary divisions, namely FUSAG and 21AG (see Appendix B.2), that was diagnostic.
It was, however, where these forces were located that was important. Moreover, they
argue that it was not the knowledge that General Patton (see Appendix B.2) was the
most likely commander of FUSAG that was diagnostic, but it was in fact where Pat-
ton’s army was situated that was diagnostic. Furthermore, Knox discusses the RECON
and SIGINT (see Appendix B.2) row entries, arguing that they are data points which

2https://Dstl.github.io/eleatics/argumentation/fortitude/schemes.xhtml (Accessed
on: 10.02.2023)

3https://dstl.github.io/eleatics/argumentation/fortitude/orbat.xhtml (Accessed
on: 10.02.2023)

https://Dstl.github.io/eleatics/argumentation/fortitude/schemes.xhtml
https://dstl.github.io/eleatics/argumentation/fortitude/orbat.xhtml
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Table B.1: The initial ACH matrix for Operation Fortitude-South, where “C” and “I”
denote row headers that are consistent and inconsistent with the hypotheses (column
headers), respectively.

Information, Evidence, and Assumptions
Hypotheses

Normandy Pas de Calais

PORT I C
EXPANSION C I

STRONGPOINT C I
21AG C C

21AGLOC C I
PATTON I C
FUSAG C C

FUSAGLOC I C
SPIES I C

SIGINT I C
SHORTEST I C

VSITES I C
RECON I C

AIRPLAN I C
PENINSULA C C

CAS C C

provide information about the location of FUSAG and 21AG. This insight results in an-
other ACH matrix which contains information about the Order of Battle. The evaluated
ORBAT matrix, shown in Table B.3, provides support for the Pas de Calais hypothe-
sis because there were fewer row entries that were inconsistent with that hypothesis.
ORBAT’s support for the Pas de Calais hypothesis is represented by a row entry in the
refined ACH matrix in Table B.4, which I discuss in Section B.1.5.

B.1.4 Step Four

Although step four of the ACH requires that analysts review where there is disagree-
ment amongst themselves, the work produced by Knox at Dstl does not include this
particular task, which is most likely because this analysis was conducted by one per-
son. The ACH can be conducted using either a team of analysts or a single reasoner,
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Table B.2: A table containing the argumentation schemes, which were identified by
Dstl, corresponding to the row entries in the initial and refined ACH matrix for the
Operation Fortitude-South example.

Argumentation Scheme
Information, Evidence

and Assumptions

Argument from Consequences
SHORTEST, STRONGPOINT,

EXPANSION, and VSITES
Argument from Established Rule PORT, CAS, and PENINSULA

Argument from Evidence to a Hypothesis SIGINT, ORBAT, and AIRPLAN
Argument from Position to Know SPIES
Argument from Cause to Effect FUSAGLOC, and 21AGLOC
Argument from Expert Opinion PATTON

Table B.3: The ORBAT ACH matrix , where “C” and “I” denote row headers per-
taining to the Order of Battle that are consistent and inconsistent with the hypotheses,
respectively.

Information, Evidence, and Assumptions
Hypotheses

Normandy Pas de Calais

21AGLOC C I
PATTON I C

FUSAGLOC I C
SPIES I C

SIGINT I C
RECON I C
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so this alteration is in conformity with the ACH procedure [173].

B.1.5 Step Five

Step five of the ACH dictates that analysts must refine the set of hypotheses, removing
or combining superfluous or overlapping hypotheses, respectively. However, Knox had
already completed this reduction task in step two, as discussed in Section B.1.2, before
the instantiation of the initial ACH matrix. The refined matrix is presented in Table
B.4. The matrix contains fewer items of information, evidence, and assumptions than
the initial matrix, shown in Table B.1. One interesting point to note here is that there
seems to be some double counting of row entries due to the introduction of ORBAT
within the refined matrix. For instance, both the ORBAT and refined matrix in Tables
B.3 and B.4, respectively, contain the items SIGINT and SPIES. The inclusion of those
items twice, whether intentional or otherwise, means that they bear more weight on the
evaluation of hypotheses.

Table B.4: The refined ACH matrix for Operation Fortitude-South, where “C” and “I”
denote row headers that are consistent and inconsistent with the hypotheses (column
headers), respectively.

Information, Evidence, and Assumptions
Hypotheses

Normandy Pas de Calais

PORT I C
EXPANSION C I

STRONGPOINT C I
SPIES I C

SIGINT I C
SHORTEST I C
AIRPLAN I C

ORBAT I C

B.1.6 Step Six

In line with step six of the process, the likelihood of hypotheses is found by counting
the number of row entries which were inconsistent with each hypothesis such that the
hypothesis that was the least inconsistent was the most likely. Knox drew tentative
conclusions about the likelihood of both the Normandy and Pas de Calais hypothe-
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ses, where they concluded that the latter was the most likely given the information,
evidence, and assumptions available.

B.1.7 Step Seven

Recall that step seven of the ACH requires analysts to conduct sensitivity analysis
where they sequentially remove each row entry and consider whether the likelihood of
any of the hypotheses changes. Here, Knox reasoned with the items of information,
evidence, and assumptions that feature within the analysis and concluded that ORBAT

was ‘probably the most critical’4. This row entry was chosen as the most diagnostic
because it is row entry which had accrued other items of information and evidence,
thus, its removal significantly changes the likelihood of the Pas de Calais hypothesis.

B.1.8 Step Eight and Step Nine

In step eight of the ACH, analysts are required to report the hypotheses and their like-
lihoods, as well as any diagnostic row entries. Knox suggests that Toulmin’s argument
schemata (see Figure 2.7 in Section 2.2) could be employed in a such a report as it is ca-
pable of expressing evidence (or backing) that supports a conclusion (or claim) through
an inference. While it is possible to employ Toulmin’s seminal model of argument to
represent hypotheses (as claims) which are supported by observations (as grounds), in
accordance with Pherson and Heuer Jr.’s definition of a hypothesis (Chapter 1), Toul-
min’s model is not fit for operational use within intelligence settings because of the
issues described in Section 2.2.

Finally, in step nine of the ACH, analysts must identify things to observe as indi-
cators of future development of a situation. Knox states that this task could have been
completed if the ACH was invented prior to World War Two and the Allied nations had
chosen to use the technique.

B.1.9 Concluding Remarks on Dstl’s Contribution

In summary, Knox demonstrates on Dstl’s eleatics website that the ACH can be com-
bined with argumentation schemes for real-world scenarios. However, the assumption
that each cell in an diagnosticity matrix can be the instantiation of one of Walton’s ar-
gumentation schemes is quite restrictive: hypotheses can be supported by a number of

4https://dstl.github.io/eleatics/argumentation/fortitude/fortitude.xhtml (Ac-
cessed on: 10.02.2023)

https://dstl.github.io/eleatics/argumentation/fortitude/fortitude.xhtml
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sequentially linked instantiations of schemes, as I discussed in the introduction to Part
II.

Future work should study the combination of said techniques to understand whether
the approach works in practice for real-world situations. The study could look some-
what similar to Murukannaiah et al.’s work in [152] but the data employed within the
test should be from a real-world scenario. The incorporation of both trained intelli-
gence analysts as test subjects, who employ the ACH and argumentation schemes and
also the ACH alone as a control, should provide a better assessment of whether this
approach is beneficial for analysts.

B.2 List of Information, Evidence, and Assumptions

Presented below is the list of information, evidence, and assumptions employed by
Dstl for the ACH for the Operation Fortitude-South scenario, taken from Dstl’s eleatics

website5 [63]:

• INVASION: The build-up of US troops in England makes invasion inevitable.
It’s just a question of where and when.

• PENINSULA: Forces landing on a peninsula can be cut off on a narrow front.

• CAS: The invasion must have close air support.

• PORT: A major port will be needed to supply invasion forces.

• STRONGPOINT: The Pas de Calais is the strongest point of the Axis defences.

• SIGINT: Axis signals intelligence.

• RECON: Reports from Axis aerial reconnaissance.

• SPIES: Reports from Axis spies in England.

• FUSAG: First US Army Group. Apparently larger than 21st Army Group.

• FUSAGLOC: FUSAG is based in Southeast England

• PATTON: Patton is the most likely commander for an Allied invasion, and Patton
commands FUSAG.

5https://Dstl.github.io/eleatics/argumentation/fortitude/evidence.xhtml (Ac-
cessed on: 10.02.2023)

https://Dstl.github.io/eleatics/argumentation/fortitude/evidence.xhtml
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• AIRPLAN: The Axis view of the Allied air plan.

• 21AG: A British headquarters formation, in command of two field armies and
other supporting units, consisting primarily of the British Second Army and the
First Canadian Army. Established in London during July 1943, under the com-
mand of Supreme Headquarters Allied Expeditionary Force.

• 21AGLOC: 21st Army Group located in southern England.

• SHORTEST: The Pas de Calais affords the shortest crossing from Britain to
mainland Europe.

• VSITES: Pas de Calais is the nearest landing point to the V1 and V2 launch sites.

• EXPANSION: Better opportunities for expansion - e.g. link-up with Operation
Dragoon.

B.3 The Refined ACH Matrix’s AIF Argument Graph

The argument annotation, conducted using OVA+ [108] and captured in the AIF, for
the refined Operation Fortitude-South ACH matrix is presented in Figure B.1.
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B.4 Arguments Instantiated Using The ASPIC+ Frame-
work for the Refined ACH Matrix

Presented below are all the arguments that were instantiated from the refined ACH
matrix, using the ASPIC+ framework.
Arg 0: Generally, if the main invasion should not land in Pas de Calais, then the main invasion should land

in Normandy

Arg 1: Generally, if the main invasion should not land in Normandy, then the main invasion should land in
Pas de Calais.

Arg 2: If carrying out types of actions including the use of a major port for invasion is the established rule
for the Allied military (unless the case is an exception), then the Allied military must make use of a
major port for invasion.

Arg 3: Carrying out types of actions including making use of a major port is the established rule for the
Allied military invasion.

Arg 4: Pas de Calais currently has a major port.

Arg 5: Normandy does not currently have a major port.

Arg 6: If the Allied military bring about an invasion of Pas de Calais, then they will be attacking the strongest
point in the Axis defences.

Arg 7: Attacking the strongest point in the Axis defences will result in a bad outcome for the Allies.

Arg 8: The Allied military should invade a weaker point in the Axis defences.

Arg 9: Normandy is a weaker point in the Axis defences.

Arg 10: If the Allies bring about an invasion Normandy, then they will invading via a longer crossing from
Britain to mainland Europe.

Arg 11: Invading via a longer crossing from Britain to mainland Europe will result in a bad outcome for the
Allies – i.e., there will be more time for Axis air support to attack their troops.

Arg 12: The Allied invasion should use the shortest crossing from Britain to Europe.

Arg 13: Pas de Calais affords the shortest crossing from Britain to mainland Europe.

Arg 14: If the Allies bring about an invasion of Pas de Calais, then there will be no opportunities for expansion
– e.g., no link-up with Operation Dragoon.

Arg 15: No opportunities for expansion with Operation Dragoon will result in a bad outcome for the Allies.

Arg 16: The Allied military should link-up with Operation Dragoon after the invasion.

Arg 17: Operation Dragoon is situated closer to Normandy.

Arg 18: If the main invasion should land in Normandy, then the Axis will have received Signals Intelligence
that confirms the invasion should land in Normandy.

Arg 19: The Axis have not received Signals Intelligence that confirms the invasion should land in Normandy.

Arg 20: If the main invasion should land in Pas de Calais, then the Axis will have received Signals Intelligence
that confirms the invasion should land in Pas de Calais.

Arg 21: The Axis have received Signals Intelligence that confirms the invasion should land in Pas de Calais.
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REFINED ACH MATRIX

Arg 22: The Axis spies in England are in a position to know whether the Allied invasion should land in
Normandy.

Arg 23: The Axis spies in England state that the Allied invasion should not land in Normandy.

Arg 24: The Axis spies in England are in a position to know whether the Allied invasion should land in Pas
de Calais.

Arg 25: The Axis spies in England state that the Allied invasion should land in Pas de Calais.

Arg 26: The Axis are in a position to know about the Allied airplan which suggests that the main invasion
should land in Pas de Calais.

Arg 27: The Axis assert that the main invasion should land in Pas de Calais.

Arg 28: The Axis are in a position to know about the Allied airplan which suggests that the main invasion
should not land in Normandy.

Arg 29: The Axis assert that the main invasion should not land in Normandy.

Arg 30: If the main invasion should land in Pas de Calais, then the Allied Order of Battle will affirm the
invasion should land in Pas de Calais.

Arg 31: The Allied Order of Battle affirms that the invasion should land in Pas de Calais.

Arg 32: If the main invasion should not land in Normandy, then the Allied Order of Battle will affirm the
invasion should not land in Normandy.

Arg 33: The Allied Order of Battle affirms that the invasion should not land in Normandy.

Arg 34: [Arg 2, Arg 3]→ The Allied military invasion must use a major port.

Arg 35: [Arg 6, Arg 7]→ The main invasion should not land in Pas de Calais.

Arg 36: [Arg 8, Arg 9]→ The main invasion should land in Normandy.

Arg 37: [Arg 10, Arg 11]→ The main invasion should not land in Normandy.

Arg 38: [Arg 12, Arg 13]→ The main invasion should land in Pas de Calais.

Arg 39: [Arg 14, Arg 15]→ The main invasion should not land in Pas de Calais.

Arg 40: [Arg 16, Arg 17]→ The main invasion should land in Normandy.

Arg 41: [Arg 18, Arg 19]→ The main invasion should not land in Normandy.

Arg 42: [Arg 20, Arg 21]→ The main invasion should land in Pas de Calais.

Arg 43: [Arg 22, Arg 23]→ The main invasion should not land in Normandy.

Arg 44: [Arg 24, Arg 25]→ The main invasion should land in Pas de Calais.

Arg 45: [Arg 26, Arg 27]→ The main invasion should land in Pas de Calais.

Arg 46: [Arg 28, Arg 29]→ The main invasion should not land in Normandy.

Arg 47: [Arg 30, Arg 31]→ The main invasion should land in Pas de Calais.

Arg 48: [Arg 32, Arg 33]→ The main invasion should not land in Normandy.

Arg 49: [Arg 4, Arg 34]→ The main invasion should land in Pas de Calais.

Arg 50: [Arg 5, Arg 34]→ The main invasion should not land in Normandy.

Arg 51: [Arg 1, Arg 37, Arg 41, Arg 43, Arg 46, Arg 48, Arg 50]→ The main invasion should land in Pas de
Calais.

Arg 52: [Arg 0, Arg 35, Arg 39]→ The main invasion should land in Normandy.



OPERATION FORTITUDE-SOUTH 251

B.5 The Refined ACH Matrix’s Argumentation Frame-
work
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Appendix C

On Human-Machine Bayesian
Hypothesis Evaluation

C.1 Algorithms for Probabilistic Argumentation Frame-
works

The pseudo-code for the inducement of a Dung-style argument graph, as described by
Li, Oren, and Norman in [133], is formally presented in Algorithm C.1.

Algorithm C.1: An algorithm to induce a Dung argumentation framework
[133].

Input : A PrAF = (A,PA,R,PR).
Output: An induced argument graph G I = (A I ,RI).

1 Function INDUCE AF(PrAF) is
2 A I = /0
3 RI = /0
4 forall ai ∈A do
5 Generate a random number rai : rai ∈ (0,1]⊂ R
6 if PA(a)≥ rai then
7 A I = A I ∪{a}

8 forall (ai,a j) ∈R do
9 Generate a random number r(ai ,a j ) : r(ai ,a j ) ∈ (0,1]⊂ R

10 if PR((ai,a j))≥ r(ai ,a j ) then
11 RI = RI ∪{(ai,a j)}

12 return G I = (A I ,RI)

253
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The semantic evaluation function, as defined in Definition 5.3, is presented in Al-
gorithm C.2.

Algorithm C.2: The semantic evaluation function (Definition 5.3 in Section
5.2.2) [133].

Input : An induced argument graph G I = (A I ,RI);
A set of arguments X ;
A semantics S;
A count C.

Output: An updated count C if X features in one of G I ’s set of extensions.
1 Function SEMANTIC EVALUATION FUNCTION(G I ,X ,S,C) is
2 if ζS(G I ,X ) = true then
3 C=C+1

4 return C

C.2 Distributed Memory Parallel Architecture

To obtain results from Algorithm 5.3 for the Operation Fortitude-South ACH matrix,
distributed memory parallelism was employed on a high performance computing clus-
ter. An example of such a distributed memory architecture is displayed in Figure C.1.
The approach used up to 256 processors that possessed their own, private memory.
Data was shared between CPUs through network communication.

P1 P2 P3 P256

Memory Memory Memory Memory

Network

...

Figure C.1: Distributed memory architecture employed in the parallel execution of
Algorithm 5.3.



Appendix D

On Diagnostic Arguments in
Abstract Argumentation

D.1 Hybrid Distributed-Shared Memory Architecture

To obtain results from the DAI for the Operation Fortitude-South argumentation frame-
work, a hybrid distributed-shared memory parallel architecture was employed on a high
performance computing cluster. An example of such an architecture is displayed in
Figure D.1.

255
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Figure D.1: An example of the hybrid distributed-shared memory parallel architecture,
where each compute node P had a total of 32 threads T.
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